期刊文献+

聚乙烯醇-苯乙烯基吡啶盐缩合物/细菌纤维素复合多孔材料的制备与表征 被引量:1

Synthesis and Characterization of Polyvinyl Alcohol Bearing Styrylpyridinium Group / Bacterial Cellulose Composite Porous Materials
下载PDF
导出
摘要 通过紫外光交联与冷冻干燥结合的方法制备了聚乙烯醇-苯乙烯基吡啶盐缩合物(PVA-Sb Q)/细菌纤维素(BC)复合多孔材料。用紫外分光光谱追踪不同照射时间PVA-Sb Q的交联程度;采用扫描电镜表征复合多孔材料的表面形貌;借助傅里叶变换红外光谱仪、热失重分析仪、X射线衍射对复合材料的结构与性能进行研究;DCAT21表面张力仪探讨复合材料的吸液性能。结果表明,紫外光照120 min时PVA-Sb Q完全交联,加入PVA-Sb Q使复合多孔材料的结构变得规整,平均孔径从108 nm增加到1090 nm,呈现分层孔级的结构,孔层之间有粘连现象,孔隙率达到94%。复合多孔材料的热稳定性提高,结晶度指数由0.65降到0.55,吸液速度明显提高,吸液量由284 mg/cm^3提高到了715 mg/cm^3。 Polyvinyl alcohol bearing styrylpyridinium group( PVA-Sb Q) / bacterial cellulose( BC) composite porous materials were prepared via UV cross-linking and freeze drying. The degree of cross-linked PVA-Sb Q at different exposure time was characterized by UV spectra; composite materials morphologies were characterized by SEM; the structure of two-phase composite materials was characterized by FT-IR,TGA,XRD; finally the water absorption performance of composite materials was discussed through DCAT21 surface tension meter. PVA-Sb Q was is in 120 min. The results indicate that with PVA-Sb Q added,the structure of composite materials become neat,and the mean porous diameter increases from 108 nm to 1090 nm. There are hierarchical level holes in composite porous materials. The adhesion phenomenon is found in hole layer. The porosity of composite porous materials is up to 94%. The crystallinity of the composites reduces from 0. 65 to 0. 55. Thermal stability and water absorption rate are increased. Water absorption quality is increased from 284 mg / cm^3 to 715 mg / cm^3.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2015年第12期126-130,共5页 Polymer Materials Science & Engineering
基金 国家高技术研究发展计划(863)资助项目(2012AA030313) 国家自然科学基金资助项目(51006046)
关键词 细菌纤维素 聚乙烯醇-苯乙烯基吡啶盐缩合物 紫外光交联 多孔材料 bacterial cellulose polyvinyl alcohol bearing styrylpyridinium group cross-linking porous materials
  • 相关文献

参考文献13

  • 1Ashori A, Sheykhnazari S, Tabarsa T, et al. Bacterial cellulose/ silicanano composites: Preparation and characterization [ J ]. Garghydr. Polym. , 2012, 90: 413-418.
  • 2Pireher N, Veigel S, Aigner N, et al. Reinforcement of bacterial cellulose aerogels with biocompatible polymers [ J ]. Carbohydr. Polym. , 2014, 111: 505-513.
  • 3Iguchi M, Yamanaka S, Budhiono A. Bacterial cellu|ose-a masterpiece of nature's arts[J]. J. Mater. Sci. , 2000, 35: 261- 270.
  • 4Wang J, Chuan G, Yansen Z, et al. Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial[J]. Mater. Sci. Eng. , C, 2010, 30: 214-218.
  • 5Lopes T D, Riegel-Vidotti I C, Grein A, et al. Bacterial cellulose and hyaluronic acid hybrid membranes: production and characterization[J]. Int. J. Biol. Macromol. , 2014, 67:401-4081.
  • 6蔡志江,张睿晗,樊亚男.细菌纤维素/银纳米粒子复合多孔支架材料的制备与表征[J].高分子材料科学与工程,2013,29(1):144-148. 被引量:9
  • 7Ashori A, Sheykhnazari S, Tabarsa T, et al. Bacterial cellulose/ silica nanocomposites: preparation and characterization [ J ]. Carbohydr. Polym., 2012, 90: 413-418.
  • 8lchialura K, lwata S, Mochizuki S, et al. Revisit to the pbotocrosslinking behavior of PVA-SbQ as a water-soluble pbotopolymer with anomalously low contents of quaterized stilbazol side chains[J]. J. Polym. Sci. Part A: Polym. Chem., 2012, 50: 4094-4102.
  • 9艾玲,白绘宇,刘石林,江金强,王淼,刘晓亚,夏文水.紫外光聚合法制备PVA-SbQ/透明质酸凝胶及其性能研究[J].功能材料,2011,42(B04):346-349. 被引量:3
  • 10Won-ll P, Hun-Sik K, Soon-Min K, et al. Synthesis of bacterial celluloses in multiwaUed carbon nanotube-dispersed ruedium[J ]. Carbohydr. Polym., 2009, 77: 457-463.

二级参考文献18

  • 1李建平,彭图治.生物活性膜复合修饰电极安培法测定痕量光合抑制类除草剂[J].化学学报,2004,62(15):1419-1424. 被引量:3
  • 2Xinqiao Jia, Yoon Yeo, Rodney J, et al. [J]. Biomacromolecules, 2006, (7) : 3336-3344.
  • 3Bhattacharyya S, Guillot S, Dabboue H. [J]. Biomacromolecules, 2008,(9): 505-509.
  • 4Ladam G, Vonna L, Sackmann E. [J]. J Phys Chem B, 2003,(107): 8965-8971.
  • 5Jha A K, Hule R A, Jiao T, et al. [J]. Macromolecules, 2009, 42(2):537-546.
  • 6Dmitri A, Ossipov, Piskounova S, et al. [J]. Macromolecules, 2008, 41:3971-3982.
  • 7Xinqiao Jia, Burdick J A, Kobler J, et al. [J]. Macromolecules, 2004, 37:3239-3248.
  • 8Ichimwa K. [J]. Polym Chem Ed, 1982(20) :1411-1419.
  • 9Uhlichay T, Tomaschewski G, Komber H. [J]. Reactive & Functional Polymers, 1995, (28):55-60.
  • 10Shibuya T, Toehizawa N, Miyazaki M, et al. [J]. Journal of Photopolymer Science and Technology, 1995, (8) :29-35.

共引文献10

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部