期刊文献+

利用AAO模板制备SERS基底检测SudanⅠ 被引量:5

The SERS Detection of SudanⅠby Using AAO as Template to Prepare the Substrate
下载PDF
导出
摘要 通过模板法制备大面积、可控的、可重复的、热点集中的金纳米结构阵列,并在纳米结构阵列上通过化学修饰分子,吸附更多苏丹红Ⅰ分子至金纳米的SERS增强区域,实现其高灵敏的表面增强拉曼分析检测。以多孔阳极氧化铝为模板,通过真空蒸镀金,约200nm厚度,复制氧化铝的孔洞结构,用碱液将氧化铝模板腐蚀去除,可得到氧化铝模板的互补结构,即大面积的、均匀的金半球纳米结构阵列。在金纳米结构阵列上修饰十二硫醇,硫醇巯基端与纳米金相结合,碳链端自组装形成非极性的疏水环境,疏水环境可以捕获苏丹红Ⅰ分子,使其吸附至纳米金结构表面的SERS增强区域,实现苏丹红Ⅰ的SERS检测。由于SERS基底表面的金半球纳米结构均匀、规整,在激光光斑的区域内,苏丹红Ⅰ的SERS信号均匀、稳定,可以对苏丹红Ⅰ进行定量分析。苏丹红Ⅰ的拉曼峰强度对数与浓度对数之间呈线性关系,线性相关系数达0.99,线性范围为5×10-4-10-7 mol·L-1,回收率范围77%-117%。此方法的检测限可达到4×10-8 mol·L-1,与国标的高效液相色谱的检测限相当。 The large-scale controllable,ordered two-dimensional arrays of gold nanostructure with hot-spot were prepared together with chemical molecules were modified on the surface to concentrate SudanⅠ within the zone of the SERS effect,which lead to analytical detection of SudanⅠ in high resolution.The vapor of gold was deposed on anodic aluminum oxide(AAO)template by-200nm thickness to replicate its nanochannels,and the negative structure i.e.large-scale ordered gold nano-hemisphere array,was obtained after the removal of the template of AAO by NaOH solution.Au nano-hemisphere array was modified by 1-Dodecanethiol which can be self-assembled monolayer on the surface and concentrate SudanⅠ within the zone of the SERS detection,which can facilitate the measurement of SudanⅠ.Due to the order and regularity of Au nano-hemisphere array,the signal of SudanⅠ in the range of laser illumination is stable and uniform,and the quantitative analysis of SudanⅠ was realized.The SERS intensity of SudanⅠ is logistic proportional to the concentration in the range of 10-7 to 5×10-4 mol·L-1.The corresponding correlation coefficient of the liner equation is 0.99,the recoveries of SudanⅠ are between 77%-117%.The limit of detection for SudanⅠ is 4×10-8 mol·L-1,comparable to that of HPLC of Chinese national standard method.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2015年第6期1556-1561,共6页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(21101073,31171777) 福建省自然科学基金计划项目(2011J01053) 福建省教育厅杰青培育项目(JA11147) 集美大学创新团队基金(2010A007)资助
关键词 氧化铝模板 表面增强拉曼散射 金半球纳米阵列 真空蒸镀 苏丹红Ⅰ Anodic Aluminum Oxide Surface-enhanced Raman scattering Au nano-hemisphere array Vapor Deposition SudanⅠ
  • 相关文献

参考文献35

  • 1Refat A,Ibrahim Z S,Moustafa G G,et al. Journal of Biochemical and Molecular Toxicology,2008,22(2):77.
  • 2Qiao J D,Yan H Y,Wang H,et al. Chromatographia,2011,73(3/4):227.
  • 3Yan H Y,Wang H,Qian J D,et al. Journal of Chromatography A,2011,1218(16):2182.
  • 4Sun S,Wang Y,Yu W Z,et al. Journal of Separation Science,2011,34(14):1730.
  • 5Stiborova V,Martinek V,Rydlova H,et al. The Journal of Cancer Research,2002,62:5678.
  • 6European Commission. Health and Consumer Protection Directorate General,Committee Ⅳ-Food Safety in Production and Currency,PartⅢPhysical and Chemical Substances Surveillance,New Method Declaration,1999.
  • 7Xu Z,Wang S,Fang G,et al. Chromatographia,2010,71(5/6):397.
  • 8GB/T19681—2005. Beijing:China Standard Press (北京:中国标准出版社),2005.
  • 9Calbiani F,Careri M,Elviri L,et al. Journal of Chromatography A,2004,1042(1/2):123.
  • 10Rebane R,Leito I,Yurchenko S,et al. Journal of Chromatography A,2010,1217(17):2747.

二级参考文献22

  • 1RENBin,TIANZhong-qun(任斌,田中群).综述与专论,2004,5:1.
  • 2GAOShu-yan,ZHANGShu-xia,YANGShu-xia,etal(高书燕,张树霞,杨恕霞,等).化学通报,2007,70:908.
  • 3Liao P F, Bergman J G, Chemla DS, et al. Chem. Phys. Lett. , 1981, 82: 355.
  • 4Hulteen J C, Treichel D A, Smith M T, et al. J. Phys. Chem. B, 1999, 103: 3854.
  • 5Green M, Liu F M. J. Phys. Chem. B. , 2003, 107: 13015.
  • 6Freeman R G, Graber K C, Allison K J, et al. Science, 1995, 267: 1629.
  • 7YAOJian-lin,PANGuping,XUEKuan-hong,etal(姚建林,潘谷平,薛宽宏,等).电化学,1999,5:371.
  • 8Tao A, Kim F, Hess C, et al. Nano. Lett. , 2003, 3: 1229.
  • 9LIHong-bian,GUOMin,YINGui,etal(李红变,郭敏,尹桂,等).无机化学学报,2008,24(10):1664.
  • 10Xu L J, Han G B, Hu J W. Physical Chemistry Chemical Physics, 2009, 11: 6490.

共引文献7

同被引文献49

  • 1曹向禹.含联苯胺废水处理技术的研究进展[J].染料与染色,2012,49(4):52-55. 被引量:8
  • 2刘斌,周培疆,吴新国,宋立荣.联苯胺对碱性磷酸酶抑制作用及其动力学研究[J].环境科学与技术,2005,28(3):6-8. 被引量:7
  • 3Wang H, Liu C, Wu S, Liu N, Peng C, Chan T, Hsu C, Wang J, Wang Y. Adv. Mater.,2006,(18): 491-495.
  • 4Nie S M, Emery S R. Science,1997,275(5303): 1102-1106.
  • 5Wang C W, Li P, Wang J F,Rong Z, Pang Y F, Xu J W, Dong P, Xiao R, Wang S Q. Nanoscale,2015,7(44): 18694-18707.
  • 6Li J L, Chen L X, Lou T, Wang Y Q. ACS Appl. Mater. Interfaces,2011,3(10): 3936-3941.
  • 7Feng S L, Gao F, Chen Z, Grant E, Kitts DD, Wang S, Lu X N. J. Agric. Mater. Res. Bull.,2013,61(44): 10467-10475.
  • 8Silva B V.M, Rodriguez B A.G, Sales G F, Sotomayor M D, Dutra R F. Biosens. Bioelectron.,2016,77(15): 978-985.
  • 9Wang JJ, Zhou F, Duan G T, Li Y, Liu G Q, Su F H, Cai W P. RSC Adv.,2014,4(17): 8758-8763.
  • 10Xu S C, Jiang S Z, Hu G D, Wei J, Wang L, Zhang J Y, Li Q J. Laser Phys.,2015,25(11): 115601-115608.

引证文献5

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部