期刊文献+

银纳米粒子/碳纳米管阵列SERS基底增强因子分析和实验 被引量:2

SERS Enhancement Factor Analysis and Experiment of Carbon Nanotube Arrays Coated by Ag Nanoparticles
下载PDF
导出
摘要 为了直观、准确地定量分析表面拉曼增强散射基底结构的拉曼增强,利用磁控溅射和高温退火的方法制备了银纳米粒子修饰垂直排列的碳纳米管阵列三维复合结构样品;实验采用罗丹明6G(R6G)溶剂作为探针分子,结合共聚焦显微拉曼系统,开展了表面增强拉曼增强因子(EF)分析计算的相关实验。SEM结果表明:在有序碳纳米管阵列的表面和外壁均匀地负载了大量银纳米粒子。对退火温度为450℃,退火时间为30min的样品进行了EF计算,得到其增强因子约为2.2×103,并分析了EF值低的原因主要是:在碳纳米管上溅射的银膜膜厚不均匀,导致退火后银颗粒分布不均,使得样品粗糙度值偏大,EF值较低;实验中所用的激励光源并非银纳米颗粒的优化光源。 To intuitive and accurate quantitatively analyze Raman enhancement of surface enhanced Raman scattering substrate structure,three-dimensional composite structure of silver nanoparticles modified vertically aligned carbon nanotube array is produced by magnetron sputtering and thermal annealing process;Relevant experiments using Rhodamine 6G(R6G)solution as the molecular probes are conducted to analyze surface enhanced Raman enhancement factor(EF),combining with confocal Raman microscopy systems.The result of scanning electron microscopy(SEM)shows that a large number of silver nanoparticles are attached onto the tips and sidewalls of the ordered carbon nanotubes array uniformly.EF of the sample which was produced 30 min annealing time and 450℃ annealing temperature evaluates to 2.2×103,and the reasons for the low EF are analyzed:on the one hand,thickness of silver film sputtered on vertically aligned carbon nanotube array is non-uniform,leading to distribution of silver nanoparticles is uneven after annealing,so that the value of sample roughness is too large,EF value is low;on the other hand,the excitation light source is not the advantage wavelength of silver nanoparticles in the experiments.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2015年第6期1567-1571,共5页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(61376121) 中央高校项目(106112013CDJZR120008 125502 120003)资助
关键词 表面增强拉曼散射 碳纳米管阵列 银纳米粒子 增强因子 Surface-enhanced Raman scattering(SERS) Carbon nanotube arrays Ag nanoparticles Enhancement factor
  • 相关文献

参考文献3

二级参考文献56

  • 1王悦辉,周济,王婷.稳定分散的纳米银溶胶的制备及其表征(英文)[J].无机化学学报,2007,23(8):1485-1490. 被引量:1
  • 2M. Fleischmann, P. J. Hendra, A. J. McQuillan. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chem. Phys. Lett., 1974, 26(2): 163-166.
  • 3D. L. Jeanmaire, R. P. Van Duyne. Surface Raman spectroelectrochemistry: Part I. Heteroeyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. J. Electroanal. Chem., 1977, 84(1): 1-20.
  • 4Z. Q. Tian, B. Ren. Absorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy[J]. Annu. Rev. Phys. (3hem. , 2004, 55:197-229.
  • 5Zhongqun Tian, Bin Ren, Deyin Wu. Surface enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures[J]. J. Phys. Chem. B, 2002, 106(37) : 9463-9483.
  • 6K. Kneipp, Y. Wana, H. Kneipp. Single molecule detection using surface-enhanced Raman scattering (SERS)[J]. Phys. Rev. Lett., 1997, 78(9): 1667-1670.
  • 7S. Nie, S. R. Emorv. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997, 275(5303) : 1102-1106.
  • 8Jiawen Hu, Yong Zhang, Jianfeng Liet al.. Synthesis of Au@Pd core-shell nanoparticles with controllable size and their application in surface-enhanced Raman spectroscopy [J]. Chem. Phys. Lett. , 2005, 408(4-6): 354-359.
  • 9G. Kartopu, M. Es-Sounil, A. V. Sapelkin et al.. A novel SERS-active substrate system: Template-grown nanodot-film structures[J]. Phys Star Sol (a), 2006, 203(10) : R82-R84.
  • 10Honggang Li, C. E. Baum, B. M. Cullum. Characterization o{ novel gold SERS substrates with multilayer enhancements[C]. SPIE, 2006, 6380:63800D-1-12.

共引文献10

同被引文献38

  • 1杨志明,亓夫军,钟石磊,郑荣儿.水下激光拉曼光谱探测控制系统的设计与实现[J].中国海洋大学学报(自然科学版),2009,39(S1):475-478. 被引量:4
  • 2M Fleischmann, P J Hendra, A J Mcquillan. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2): 163-166.
  • 3H X Xu, E J Bjerneld, M Koll, et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering[J]. Physical Review Letters, 1999, 83(21): 4357-4360.
  • 4H Liu, D Lin, Y Sun, et al. Cetylpyridinium chloride activated trinitrotoluene explosive lights up robust and ultrahigh surface-enhanced resonance Raman scattering in a silver sol[J]. Chemistry, 2013, 19(27): 8789-8796.
  • 5S J Barrow, A M Funston, D E Gómez, et al. Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer[J]. Nano Letter, 2011, 11(10): 4180-4187.
  • 6J A Fan, C Wu, K Bao, et al. Self-assembled plasmonic nanoparticle clusters[J]. Science, 2010, 328(5982): 1135-1138.
  • 7M P Cecchini, V A Turek, P Jack, et al. Self-assembled nanoparticle arrays for multiphase trace analyte detection[J]. Nature Materials, 2013, 12(2): 165-171.
  • 8X M Zhao, B H Zhang, K L Ai, et al. Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surfaceenhanced Raman spectroscopy[J]. Journal of Materials Chemistry, 2009, 19(31): 5547-5553.
  • 9P Hildebrandt, M Stockburger. Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver[J]. Journal of Physical Chemistry, 1984, 88(24): 5935-5944.
  • 10L L He, N J Kim, H Li, et al. Use of a fractal-like gold nanostructure in surface-enhanced Raman spectroscopy for detection of selected food contaminants[J]. Journal of Agricultural and Food Chemistry, 2008, 56(21): 9843-9847.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部