期刊文献+

环Z4+uZ4线性码关于李重量的一类MacWilliams恒等式

A Type of MacWilliams Identity for Linear Codes over Z4+uZ4 on Lee Weight
下载PDF
导出
摘要 MacWilliams恒等式是研究线性码及其对偶码的码字重量分布的一个非常有用的工具,而码字的重量分布的研究是编码研究中一个非常重要的研究方向.本文定义了环Z4+uZ4上长度为n的线性码的m-层李重量计数器,给出了环Z4+uZ4上长度为n的线性码关于李重量的一类MacWillisms恒等式.证明了该等式是生成矩阵在环Z4+uZ4上的环GR(4,m)+uGR(4,m)上线性码关于李重量的MacWilliams恒等式.进一步,利用Krawtchouk多项式,获得了环Z4+uZ4上长度为n的线性码的等价形式MacWilliams恒等式. MacWilliams identity is an useful tool in studying weight distributions of linear codes and their duals.Weight distribution is also an important topic of coding theory.This paper defines the m-ply Lee weight enumerators for linear codes of length n over Z4 + u Z4.We give a type of Mac-Williams identity for linear codes of length n over Z4 + u Z4 on Lee weight.We prove that this identity is the MacWilliams identity on Lee weight for linear codes over GR(4,m) + uGR(4,m) having generator matrix over 7A+ u Z4.Furthermore,by means of Krawtchouk polynomials the equivalent form of the type of MacWilliams identity for linear codes of length n over Z4 + u Z4 is obtained.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第12期2461-2465,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.61370089) 安徽省自然科学基金(No.1408085QF116) 安徽省高校省级科学研究项目(No.KJ2013B221) 合肥工业大学博士专项科研资助基金(No.JZ2014HGBZ0029) 中央高校基本科研业务费专项资金资助项目(No.J2014HGXJ0073) 东南大学移动通信国家重点实验室开放研究基金资助课题(2014D04) 2014年安徽省高校优秀青年人才支撑计划项目(No.皖教秘人[2014]181) 合肥师范学院校级科研机构基金(No.2015JG09)
关键词 线性码 李重量 m-层重量计数器 MACWILLIAMS恒等式 linear codes Lee weight m-ply weight enumerator MacWilliams identities
  • 相关文献

参考文献16

  • 1Hammons A R, Kumar Jr P V, Calderbank A R, Solance N J A,Sold! P. The Z-linearity of Kerdock, Preparata, Goethals and related codes [ J ]. IEEE Transactions on Information Theory, 1994,40(2) :301 - 319.
  • 2Bachoc C. Application of coding theory to the construvtion of modular lattices [ J ]. Journal of Combinatorial Theory, Series A, 1997,78(1) :92 - 119.
  • 3施敏加,杨善林,朱士信.环F2+uF2上长度为2^e的循环码的距离[J].电子学报,2011,39(1):29-34. 被引量:13
  • 4Shi M J, Yang S L, Zhu S X. Good p-ary quasic-cyclic codes from cyclic codes over Fp + vFp[ J] .Journal of Systems Science and Complexity, 2012,25 (2) : 375 - 384.
  • 5Dinh H Q, Nguyen H D T. On some classes of constacyclic codes over polynomial residue tings [ J ]. Advances in Mathe- matics of Communications,2012,6(2) : 175 - 191.
  • 62aau S X,Wang L Q.A class of constacyclic codes over Yp + v bp and its gray image[ J] .Discrete Mathematics, 2011,311 (23 - 24) :2677 - 2682.
  • 7Xiaoshan KAI,Shixin ZHU,Liqi WANG.A FAMILY OF CONSTACYCLIC CODES OVER F_2+μF_2+ vF_2+ uvF_2[J].Journal of Systems Science & Complexity,2012,25(5):1032-1040. 被引量:8
  • 8Y'fldiz B, Karadeniz S.Linear codes over + u Z,:MacWtlliams identifies,projections,and fca'ma/ly self-dual codes[ J] .Finite Field and Their Applications,2014,27(1):24-40.
  • 9MacWilliams F J, Sloane N J A. The Theory of Error-Corect- hag Codes [ M ]. Amsterdam, the Netherlands: North-HoUand, 1977. 125 - 154.
  • 10Wei V K. GenemlizeA Hamming weights for linear codes[ J]. IE.EE Transactions on Information Theory, 1991,37 (5) : 1412 - 1418.

二级参考文献32

  • 1李平,朱士信.环F2+uF2上长为2^e的循环码[J].电子与信息学报,2007,29(5):1124-1126. 被引量:16
  • 2Taher Abualrub, Robert Oehmke. On the generators of cyclic codes of length 2e [J]. IEEE Trans Inform Theory, 2003,49 (9) :2126 - 2133.
  • 3Xiaoshan Kai, Shixin Zhu. On the distances of cyclic codes of length 2e over Z4[J]..Discrete Mathematics,2010, 310( 1 ) : 12 - 20.
  • 4H Q Dinh. Complete distances of all negacyclic codes of length 2^s over Z2^a [J ]. IEEE Trans Inform Theory, 2007,53 ( 1 ) : 147 - 161.
  • 5H Q Dinh. Constacyclic codes of length 2s over Galois extension rings of F2 + uF2 [ J ]. IEEE Trans Inform Theory, 2009,55(4):1730 - 1740.
  • 6I. F. Blake, Codes over certain rings, Inform. Control, 1972, 20: 396-404.
  • 7I. F. Blake, Codes over integer residue rings, Inform. Control, 1975, 29: 295-300.
  • 8A. R. Hammons J r., P. V. Kumar, A. R. Calderbank, N. J . A. Sloane, and P. Sole, The Z4- linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, 1994, 40: 301-319.
  • 9V. Tarokh, N. Seshadri, and A. R. Calderbank, Space-time codes for high data rate wireless com?munication: Performance criterion and construction, IEEE Trans. Inform. Theory, 1998, 44: 744-765.
  • 10A. R. Calderbank and N. J . A. Sloane, Modular and p-adic cyclic codes, Des. Codes Cryptogr., 1995, 6: 21-35.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部