期刊文献+

大脑皮质中螺旋波的研究进展

下载PDF
导出
摘要 螺旋波(spiralwave)是一种由中心向外的转动波,在自然界中广泛存在,如水中的漩涡、大气中的台风等。根据流体力学原理,平面波在传播时遇到干扰就可能产生螺旋波,如河流中岩石阻挡水流产生的漩涡。螺旋波存在于许多生物学系统中。例如,在心室纤颤、培养的兴奋性细胞、视网膜扩布性抑制、受精爪蟾卵母细胞钙波和培养的神经胶质细胞钙波等系统中均可出现螺旋波。
出处 《中风与神经疾病杂志》 CAS 北大核心 2015年第12期1136-1139,共4页 Journal of Apoplexy and Nervous Diseases
基金 国家自然科学基金(No.31371125 81171220) 教育部留学回国人员科研启动基金 吉林省留学人员科技创新创业项目 吉林大学科学前沿与交叉学科创新项目 吉林大学第一医院儿科发展基金 美国国立卫生研究所基金(NIH R-01NS059034)
  • 相关文献

参考文献22

  • 1Xiaoying Huang, Weifeng Xu, Jianmin Liang, et al. Spiral wave dy- namics in neocortex[ J]. Neuron ,2010,68 (5) :978-990.
  • 2Winfree AT. The geometry of biological time [ M ]//Winfree, AT. 2nd ed. New York : Springer-Verlag,2001.4-146.
  • 3Jalife J. Rotors and spiral waves in atrial fibrillation [ J ]. J Cardiovasc Electrophysio1,2003,14 (7) : 776 -780.
  • 4Bub G, Shrier A, Glass L. Global organization of dynamics in oscilla- tory heterogeneous excitable media[ J]. Phys Rev Lett,2005,94(2) : 028105.
  • 5Gorelova NA ,Bures J. Spiral waves of spreading depression in the iso- lated chicken retina [ J ]. J Neurobiol, 1983,14 (5) :353-363.
  • 6Lechleiter J, Girard S, Peralta E, et al. Spiral calcium wave propaga- tion and annihilation in Xenopus laevis oocytes [ J ]. Science, 1991, 252 (5002) :123-126.
  • 7Verkhratsky A, Orkand RK, Kettenmann H. Glial calcium : homeosta- sis and signaling function[ J]. Physiol Rev, 1998,78 ( 1 ) :99-141.
  • 8Trayanova NA, Aguel F, Skouibine K. Extension of refractoriness in a model of cardiac defibrillation [ J ]. Pac Symp Biocomput, 1999,24:240- 251.
  • 9Buzsaki G, Anastassiou CA, Koch C. The origin of extraccllular fields and currents-EEG, ECoG, LFP and spikes [ J ]. Nat Rev Neurosci, 2012,13(6) :407-420.
  • 10Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscilla- tions in the sleeping and aroused brain [ J]. Science, 1993,262 (5134) :679-685.

二级参考文献63

  • 1马洪涛,吴建永,吴才宏.大鼠皮层自发癫痫状活动起源的时空特征[J].中国科学(C辑),2005,35(2):138-145. 被引量:2
  • 2Wu JY, Huang XY, Zhang C. Propagating waves of activity in the neocortex: What they are, what they do. Neuroscientist, 2008, 14:487-502.
  • 3Wu JY, Guan L, Bai L, Yang Q. Spatiotemporal properties of an evoked population activity in rat sensory cortical slices. J Neurophysiol, 2001, 86:2461-2474.
  • 4Ermentrout GB, Kleinfeld D. Traveling electrical waves in cortex: Insights from phase dynamics and speculation on a computational role. Neuron, 2001, 29, 33-44.
  • 5Momose-Sato Y, Honda Y, Sasaki H, Sato K. Optical imaging of large-scale correlated wave activity in the developing rat CNS. J Neurophysiol, 2005, 94:1606-1622.
  • 6Devonshire IM, Dommett E J, Grandy TH, Halliday AC, Greenfield SA. Environmental enrichment differentially modifies specific components of sensory-evoked activity in rat barrel cortex as revealed by simultaneous electrophysiological recordings and optical imaging in vivo. Neuroscience, 2010, 170:662-669.
  • 7Ikeda H, Kiritoshi T, Murase K. Synaptic plasticity in the spinal dorsal horn. Neurosci Res, 2009, 64:133-136.
  • 8Sill B, Hammer PE, Cowan DB. Optical mapping of Langendorff-pedused rat hearts. J Vis Exp, 2009, http: //www.jove.com/details.stp?id= 1138.
  • 9Akemann W, Mutoh H, Perron A, Rossier J, Knopfel T. Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nature Methods, 2010, 7(8): 643-649.
  • 10Garaschuk O, Milos RI, Konnerth A. Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nat Protoc, 2006, 1:380-386.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部