期刊文献+

光栅-平面镜型可调式空间外差光谱仪 被引量:3

Tunable spatial heterodyne spectroscopy with grating-mirror structure
下载PDF
导出
摘要 针对空间外差光谱技术测量光谱范围较窄(10nm左右),制约其应用范围的问题,提出了一种光栅-平面镜结构的可调式空间外差光谱仪系统。该系统将传统的双平面光栅式空间外差光谱仪中的一块光栅换成平面镜,让另一块光栅可旋转来组成可调式结构;通过旋转光栅切换测量波段,展宽其测量范围;对平面镜施加微小俯仰角以确保谱图还原的单值性;从而拓展了仪器的应用范围。搭建了原理样机并对其性能进行了实验验证。结果表明,设计的仪器的光谱范围达到了100nm左右,分辨率优于0.29nm。该仪器结构简单,光栅制作难度低,易于实现谱图还原。另外,通过增加光栅旋转切换次数和引入抑制杂光措施等手段,还可进一步展宽波段范围,提高系统光谱分辨率。 As Spatial Heterodyne Spectroscopy(SHS)technology has a narrower spectral bandpass(about 10nm)and its applications are restricted generally,this paper proposes a tunable SHS with a grating-mirror structure to widen the application ranges of the spectrometer.The tunable structure in the spectrometer is implemented by taking aplane mirror to replace a grating in the traditional double grating SHS system,meanwhile allowing another grating to rotate.It switches measuring band to broaden measurement range and applies a small pitching angle on the plane mirror to ensure the monodromy of the recover spectra,by which the application ranges of the spectroscopy are expanded.A prototype is established to verify the feasibility of the proposed SHS.The experiment result shows that the designed SHS has the bandpass range up to about 100 nm and its spectral resolution is better than 0.29 nm.The spectrometer has a simple structure and its grating production and spectral reduction are easy to be implemented.Moreover,by increasing the rotated times of the grating and introdu-cing methods to eliminate stray light etc,it will expand the its bandpass farther and improve the spectral resolution.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2015年第12期3295-3302,共8页 Optics and Precision Engineering
基金 国家自然科学基金青年基金资助项目(No.61505204) 国家重大科学仪器设备开发专项资助项目(No.2014YQ120351 No.2011YQ120023) 国家重大科研装备研制项目(No.ZDYZ2008-1) 吉林省科技发展计划资助项目(No.20140203011GX)
关键词 空间外差光谱术 宽波段外差光谱术 光谱仪 高光谱分辨率 光栅色散 光栅-平面镜型 spatial heterodyne spectroscopy broadband bandpass spectroscopy spectrometer high spectral resolution grating dispersion grating-mirror structure
  • 相关文献

参考文献16

  • 1ROESLER F L,HARLANDER J.Spatial heterodyne spectroscopy:interferometric performance at any wavelength without scanning[C].Spectroscopy '90,4-6 June,Los Cruces International Society for Optics and Photonics,1990:234-243.
  • 2HARLANDER J,ROESLER F L,CARDON J G,et al..SHIMMER:a spatial heterodyne spectrometer for remote sensing of Earth ' s middle atmosphere [J].Applied Optics,2002,41(7):1343-1352.
  • 3MIERKIEWICZ E J,ROESLER F L,HARLANDER J,et al..First light performance of a near-UV spatial heterodyne spectrometer for interstellar emission line studies[J].SPIE,2004,5492:751-766.
  • 4BUTCHER H,DOUGLAS N,FRANDSEN S,et al..A practical non-scanning FTS for astronomy.High resolution Fourier transform spectroscopy[J].OSA Technical Digest Series,1989,6:9-12.
  • 5叶松,方勇华,洪津,杨伟锋,乔延利.空间外差光谱仪系统设计[J].光学精密工程,2006,14(6):959-964. 被引量:40
  • 6熊伟,施海亮,汪元钧,罗海燕,方勇华,乔延利.近红外空间外差光谱仪及水汽探测研究[J].光学学报,2010,30(5):1511-1515. 被引量:30
  • 7GORNUSHKIN I B,SMITH B W,PANNE U,et al..Laser-induced breakdown spectroscopy combined with spatial heterodyne spectroscopy[J].Applied Spectroscopy,2014,68 (9):1076-1084.
  • 8HOSSEINI S S,GONG A,RUTH D,et al..Tunable Spatial Heterodyne Spectroscopy (TSHS):a new technique for broadband visible interferometry[C].In:SPIE Astronomical Telescopes+ Instrumentation:International Society for Optics and Photonics,2010:77343J-77343J-77312.
  • 9FENG Y,BAI Q,YAN P,et al..Experimental research for broadband spatial heterodyne spectroscopy[C].Photonics Asia 2010International Society for Optics and Photonics,2010:78501U-78501U-8.
  • 10ENGLERT C R,BABCOCK D D,HARLANDER J M.Spatial heterodyne spectroscopy for long-wave infrared:first measurements of broadband spectra[J].Optical Engineering,2009,48(10):105602-105609.

二级参考文献72

共引文献113

同被引文献28

  • 1贾辉,姚勇.微小型光栅光谱仪光学系统的特点与光谱分辨率的提高[J].光谱学与光谱分析,2007,27(8):1653-1656. 被引量:25
  • 2Shapiro H M. Practical flow cytometry[M]. New York: Wiley-Liss, 2003: 1-50.
  • 3Grogan W M, Collins J M. Guide to flow cytometry methods[M] . Florida: CRC Press, 1990: 1-20.
  • 4Ortyn W E, Basiji D A, Morrissey P J, et al. Blood and cell analysis using an imaging flow cytometer: US8660332[P]. 2014-02-25.
  • 5Ortyn W E, Basiji D A. Imaging and analyzing parameters of small moving objects such as cells: US6975400[P]. 2005- 12-13.
  • 6Ozaki Y, Uda S, Saito T H. A quantitative image sytometry technique for time series or population analyses of signaling networks[J]. PLoSOne, 2010, 5(4): 9955-9965.
  • 7George T C, Basiji D A, Hall B E, et al. Distinguishing modes of cell death using the image stream multispectral imaging flow eytometer[J]. Cytometry A, 2004, 59(2): 237-245.
  • 8Thomas S, Wood A P Carmina L Opt, 1992 Nicholas G. Hybrid diffractive-refractive lenses and achromats[J]. Appl Opt, 1988, 27(14): 2960-2971.
  • 9Design of infrared hybrid refractive-diffractive lenses[J]. Appl Opt, 1992, 31(13): 2253-2258.
  • 10Peter P C. Modeling diffraction efficiency effects when designing hybrid diffractive lens systems[J]. Appl 31(13) : 2248-2252.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部