期刊文献+

静磁场对固液界面表面电荷性质的影响 被引量:1

Effect of static magnetic field on surface charges of solid-liquid interfaces
下载PDF
导出
摘要 考虑磁场对固液界面表面电荷性质的影响与微纳流体系统的流体阻力相关,本文采用原子力显微镜(AFM)研究了静磁场对去离子水黏度以及高硼硅玻璃-去离子水界面表面电荷性质的影响,并分析了静磁场对去离子水性质影响的机理。研究结果表明,将去离子水静置于磁场强度为0~0.6T的静磁场下30min时,去离子水的黏度随磁场强度的增加而减小,而高硼硅玻璃-磁化水界面的表面电荷密度随磁场强度的增加而增加;静磁场对去离子水性质影响的机理是磁场引起的去离子水内氢键以及氢氧键的断裂。研究结果同时表明,磁场可以有效地改变固液界面的表面电荷性质。本文的研究结果为利用磁场有效地控制微纳流体系统的流体阻力提供了可能。 As the effect of a static magnetic field on the surface charge of solid-liquid interfaces is related to the fluid drag of micro/nano fluidic systems,this paper researches the effects of the static magnetic field on the viscosity of deionized(DI)water and the surface charges of borosilicate glass-DI water interfaces and analyzes the effect mechanism of static magnetic field on the properties of DI water.The experimental results show that when the DI water is exposed in the static magnetic field with a magnetic field intensity of 0Tto 0.6Tfor 30 min,the viscosity of DI water decreases with increasing magnetic field intensity and the surface charge density of borosilicate glass-DI water interface increases with the increasing magnetic intensity.The effect mechanisms of static magnetic field on the properties of DI water are the breaking of hydrogen bond and O-H bond caused by the magnetic field.The research indicates that the static magnetic field changes the surface charge properties of solid-liquid in-terfaces.The research in this paper provides a possible method to control the fluid drag at micro/nano scales using magnetic fields.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2015年第12期3343-3349,共7页 Optics and Precision Engineering
基金 国家自然科学基金青年基金资助项目(No.51505292 No.51505108)
关键词 微纳流体系统 流体阻力 磁场 固液界面 表面电荷 micro/nano fluidic system fluid drag magnetic field solid-liquid interface surface charge
  • 相关文献

参考文献21

  • 1BHUSHAN B.Springer Handbook of Nanotechnology[M].Springer-Verlag,2010.
  • 2LIN B.Microfluidics:Technologies and Applications[M].Springer-Verlag,2011.
  • 3OU J,PEROT B,ROTHSTEIN J P.Laminar drag reduction in microchannels using ultrahydrophobic surfaces[J].Physics of Fluids,2004,16(12):4635-4643.
  • 4LI D Q.Electrokinetics in Microfluidics[M].Academic Press,2004.
  • 5STEINBERGER A,COTTIN-BIZONNE C,KLEIMA-NN P,et al..High friction on a bubble mattress[J].Nature Materials,2007,6(9):665-668.
  • 6JING D L,BHUSHAN B.Effect of boundary slip and surface charge on the pressure-driven flow[J].Journal of Colloid and Interface Science,2013,392:15-26.
  • 7LI C,CHEN L,REN Z.Surface tensions of non-polar liquids in high magnetic fields[J].Journal of Molecular Liquids,2013,181:51-54.
  • 8SUEDA M,KATSUKI A,NONOMURA M,et al..Effects of high magnetic field on water surface phenomena[J].J.Phys.Chem.C,2007,111(39):14389-14393.
  • 9OTSUKA I,OZEKI S.Does magnetic treatment of water change its properties [J].The Journal of Physical Chemistry B,2006,110(4):1509-1512.
  • 10PANG X,DENG B.The changes of macroscopic features and microscopic structures of water under influence of magnetic field[J].Physica B,2008(19-20),403:3571-3577.

二级参考文献8

共引文献76

同被引文献7

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部