期刊文献+

基于正交与插值算法的精密抛光平台综合误差建模与补偿 被引量:10

Comprehensive error modeling and compensation for precision polishing platform based on orthogonal experiment and interpolation algorithm
下载PDF
导出
摘要 为了提高四轴抛光平台的加工精度,本文针对以气浮平台和旋转台为主要运动方式的四轴抛光平台进行了几何与热综合误差建模与补偿研究。采用激光干涉仪、温度传感器等测量仪器分别对平台X、Z轴在不同温度下的定位误差进行重复测量与分析,证实了不同进给速度对定位误差没有显著影响。得到了四轴抛光平台X、Z轴的定位误差与温度之间的变化规律。基于正交多项式和插值算法分别建立了X、Z轴的几何与热综合误差模型。根据综合误差模型计算出预测数据曲线,并分别对X、Z轴的7组实验数据进行了数据拟合,拟合残差绝对值均不超过0.2μm。依据预测数据进行了补偿实验。结果显示,补偿后四轴抛光平台在常温下、温升(60 min)下和稳态下的Z轴定位误差分别降低了93.05%、92.45%、85.71%,X轴定位误差分别降低了89.28%、93.59%、93.33%。实验结果证明本文所提出的综合模型及补偿方法精度高,鲁棒性好。 To improve the machining precision of four-axis polishing platforms,ageometric and thermal comprehensive error model and an error compensation method were researched for a four-axis polishing platform with a float platform and a rotation platform.Several kinds of instruments such as laser interferometer,temperature sensor were used to repeatedly measure and analyze respectively the positioning errors of X,Zaxes at different temperatures and to verify that different feeding speeds were no significant influence on the positioning error.The change rules of between position error and temperature change for the polishing platform in X,Zaxes were obtained.Based on orthogonal poly-nomial and interpolation algorithm,the geometric and thermal comprehensive error model of X,Zaxes was established.According to the comprehensive error model,the prediction data curves were calculated,and seven groups of experimental data of X,Zaxes were fitted and the fitting residual error absolute value was verified to be less than 0.2μm.A compensation experiment was carried out according to the forecasting data.The results show that the Xaxis positioning errors of polishing platform under the normal temperature,the temperature rise of 60 min and steady state are respectively decreased by 89.33%,92.45%and 85.7%after compensation,and the Z-axis positioning errors are respectively reduced by 89.23%,93.59% and 93.33% after compensation.The experimental results demonstrate that the presented comprehensive model and compensation method have high precision and good robustness.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2015年第12期3422-3429,共8页 Optics and Precision Engineering
基金 国家973重点基础研究发展计划资助项目(No.2011CB706702)
关键词 抛光机床 正交多项式 插值算法 综合误差模型 误差补偿 polishing machine orthogonal polynomial interpolation algorithm comprehensive error model error compensation
  • 相关文献

参考文献14

  • 1LEE E S,SUH S H,SHON J W.A compensative method for calibration of volumetric position accuracy for CNC machines[J].The International Journal of Advanced Manufacturing Technology,1998,14:43-49.
  • 2RAMESH R,MANNAN M A,POO A N.Error compensation in machine tools-a review part Ⅱ:Thermal errors[J].International Journal of Machine Tools and Manufacture,2000,40(9):1257-1284.
  • 3CHEN J S,YUAN J X,NI J,et al..Real-time compensation of time-variant volumetric errors on a maching center[J].J.Eng.Ind.,1993.115(4):472-479.
  • 4ZHU W D,WANG ZH G,YAMAZAKI K.Machine tool component error extraction and error component error extraction and error compensation by incorporating statistical analysis[J].International Journal of Machine,Tools & Manufacture,2010,50:798-806.
  • 5何振亚,傅建中,陈子辰.基于球杆仪检测五轴数控机床主轴的热误差[J].光学精密工程,2015,23(5):1401-1408. 被引量:14
  • 6RAMMESH R,MANNAN M A.Error compensation in machine tools-A review.Part Ⅱ.Thermal errors[J].Internation Journal of Machine Tool & Manufacture,2000,40(9):1257-1284.
  • 7VAN TUTTERVELT C A,PENG J.Symbiosis of modeling and sensing to improve the accuracy of workpieces in small batch machining operations[J].The Internation Journal of Manufacturing Technology,1999,15(10):699-710.
  • 8苗恩铭,龚亚运,成天驹,陈海东.支持向量回归机在数控加工中心热误差建模中的应用[J].光学精密工程,2013,21(4):980-986. 被引量:44
  • 9崔岗卫,高栋,姚英学.重型数控机床热误差的分离与建模[J].哈尔滨工业大学学报,2012,44(9):51-56. 被引量:6
  • 10杨漪,姚晓栋,杨建国,张余升,袁峰.基于主成分分析与BP神经网络相结合的机床主轴热漂移误差建模[J].上海交通大学学报,2013,47(5):750-753. 被引量:16

二级参考文献78

共引文献131

同被引文献58

引证文献10

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部