期刊文献+

利用比值DEXP进行重力梯度数据深度成像 被引量:5

Using ratio DEXP for depth imaging of gravity gradient data
下载PDF
导出
摘要 针对传统DEXP快速成像结果依赖于地质体构造指数的缺点,笔者提出了利用重力异常不同阶垂向导数比值DEXP的方法。该方法使得成像结果独立于地质体构造指数。地质体的深度估计完全自动化,仅需要寻找比值DEXP成像结果的极大值点位置。通过该方法估计出的深度结果,可以进行地质体构造指数的估计。通过模型试验,证明该方法能准确地估计出地质体的深度位置以及地质体的类型。将该方法应用到Bell Geospace公司在Vinton Dome测得的Air--FTG全张量重力梯度数据中取得了很好的结果。 Traditional DEXP fast imaging method depends on the structure index of geological bodies. Aiming at the disadvantage,the authors used different order vertical derivatives of gravity data to define the ratio DEXP method. This method makes the imaging result independent from the structure index. The estimated source depths are fully automatic,and only the position of extreme point of the ratio DEXP image is needed. Through the estimated depths,we can determine the structure index of each source. Via model test,the authors proved this method can accurately estimate the depth and the types of geological bodies. Finally,the authors applied our new method to real Air-FTG gravity gradient data acquired by Bell Geospace for the Vinton Dome,and it got well results.
出处 《世界地质》 CAS 2015年第4期1113-1119,共7页 World Geology
基金 国家自然科学基金(41174097) 博士后基金面上项目(2015M571366)联合资助
关键词 重力梯度异常 比值DEXP 构造指数 gravity gradient anomaly ratio DEXP structure index
  • 相关文献

参考文献20

  • 1Thompson D T. EULDPH-a new technique for making computer assisted depth estimates from magnetic data [J]. Geophysics, 1982, 47 (1) : 31-37.
  • 2Reid A B, AUsop J M, Granser H, et al. Magnetic inter- pretation in three dimensions using Euler deconvolution [J]. Geophysics, 1990, 55 (1) : 80-91.
  • 3Thurston J B, Smith R S. Automatic conversion of mag- netic data to depth, dip, and susceptibility contrast using the SPffM methods [ J]. Geophysics, 1997, 62 (3) : 807-813.
  • 4Smith R S, Thurstou J B, Dai T F, et al. ISPITM-the im- proved source parameter imaging method [ J ]. Geophysi- cal Prospecting, 1998, 46 (2) : 141-152.
  • 5Nabighian M N. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its proper- ties and use for automated anomaly interpretation [ J ]. Geophysics, 1972, 37 (3) : 507-517.
  • 6Hsu S K, Coppens D, Shyu C T. Depth to magnetic source usinB the generalized analytic signal [ J ]. Geo- physics, 1998, 63 (6): 1947-1957.
  • 7Salem A, Willams S, Fairhead J D, et al. Tilt depth method: a simple depth estimation method using first or-der magnetic derivatives [ J ]. The Leading Edge, 2007, 26 (12) : 1502-1506.
  • 8Cooper G R J. A gradient-ratio method for the semi-auto- matic interpretation of gravity map data sets [ J ]. Geo- physical Prospecting, 2012, 60 (5) : 995-1000.
  • 9Cooper G R J. The semiautomatic interpretation of gravity profile data [ J]. Computer & Geosciences, 2001, 37 (8) : 1102-1109.
  • 10栗学磊,李文成,王凤刚,王俊山,刘蒙恩.重力资料聚焦反演成像改进及其应用[J].世界地质,2013,32(2):366-371. 被引量:7

二级参考文献27

  • 1王懋基,蔡鑫,涂承林.中国重力勘探的发展与展望[J].地球物理学报,1997,40(S1):292-298. 被引量:24
  • 2陈石,张健.重力位场谱分析方法研究综述[J].地球物理学进展,2006,21(4):1113-1119. 被引量:9
  • 3孟令顺,杜晓娟.勘探重力学与地磁学[M].北京:地质出版社.2008.
  • 4Last B J, Kubik K. Compact gravity inversion [ J]. Geo- physics, 1983, 48 (6) : 713-721.
  • 5Guillen A, Menichetti V. Gravity and magnetic inversion with minimization of a specific functional [ J ]. Geophys- ics, 1984, 49 (8): 1354-1360.
  • 6Barbosa V C F, Silva J B C. Generalized compact gravity inversion [J]. Geophysics, 1994, 59 (1): 57-68.
  • 7Portniagnine O, Zhdanov S. Focusing geophysical inver- sion images [J]. Geophysics, 1999, 64 (3) : 874-887.
  • 8Li Y, Oldenburg D W. 3-D inversion of magnetic data [J]. Geophysics, 1996, 61 (2): 394-408.
  • 9Li Y, Oldenburg D W. 3-D inversion of gravity data [J]. Geophysics, 1998, 63 (1): 109-119.
  • 10Silva J B C, Barbosa V C F. Interactive gravity inversion [j]. Geophysics, 2006, 71 (1): 1-9.

共引文献6

同被引文献24

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部