期刊文献+

一个新的极小谱任意复符号模式矩阵

A new matrix of minimally spectrally arbitrary complex sign patterns
下载PDF
导出
摘要 设S是n阶复符号模式矩阵,若对于任意一个n阶首一复系数多项式f(x),都存在一个复矩阵B∈Q_c(S),使得该矩阵的特征多项式为f(x),则称复符号模式矩阵S是谱任意的。运用中值定理来实现幂零,并用幂零—雅可比方法证明了一个新的复符号模式矩阵是极小谱任意的。 An n x n complex sign pattern matrix S is said to be spectrally arbitrary if for every monic n th degree polynomial f(x) with complex coefficients, there is a complex sign pattern matrix B∈Qc(S) such that its characteristic polynomial is f(x). Nilpotent realization is given by using the intermediate value theorem. It is proven that a new complex sign pattern matrix is minimally spectrally arbitrary by the Nil- potent-Jacobian method.
机构地区 中北大学数学系
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2015年第6期724-727,共4页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(11071227) 山西省留学回国人员科研资助项目(12-070)
关键词 复符号模式矩阵 谱任意 幂零一雅可比 蕴含幂零 complex sign pattern matrix spectrally arbitrary pattern Nilpotent-Jacobian method poten-tially nilpotent
  • 相关文献

参考文献9

  • 1LESLIE H. Handbook of linear algebra[ M]. Bocaraton: CRC Press, 2007.
  • 2DREW J H, JOHNSON C R, OLESKY D D. Spectrally arbitrary patterns [ J ]. Linear Algebra and its Applications, 2000, 308 ( 1 ) : 121 - 137.
  • 3BRITZ T, MCDONALD J J, OLESKY D D, et al. Minimal spectrally arbitrary sign patterns[ J]. SIAM Journal on Matrix Analysis and Applica- tions, 2004, 26( 1 ) : 257 -271.
  • 4MCDONALD J J, OLESKY D D, TSATSOMEROS M J, et al. On the spectra of striped sign patterns [ J]. Linear and Multilinear Algebra, 2003, 51(1): 39-48.
  • 5CAVERS M S, VANDER MEULEN K N. Spectrally and inertially arbitrary sign patterns [ J ]. Linear Algebra and its Applications, 2005, 394: 53 - 72.
  • 6高玉斌,邵燕灵.谱任意的符号模式矩阵(英文)[J].数学进展,2006,35(5):551-555. 被引量:14
  • 7SHAO J Y, SHAN H Y. The determinantal regions of complex sign pattern matrices and ray pattern matrices[J]. Linear Algebra and its Applica- tions, 2005, 395:211 -228.
  • 8GAO Y B, SHAO Y L, FAN Y Z. Spectrally arbitrary complex sign pattern matrices[J]. Electronic Journal of Linear Algebra, 2009, 18( 1 ) : 674 - 692.
  • 9CAVERS M S, KIM I J, SHADER B L, et al. On determining minimal spectrally arbitrary patterns [ J ]. Electronic Journal of Linear Algebra, 2005, 13(1) : 240 -248.

二级参考文献4

  • 1Drew,J.H.,Johnson,C.R.,Olesky,D.D.and van den Driessche,P.,Spectrally arbitrary patterns,Linear Algebra Appl.,2000,308:121-137.
  • 2Gao Yubin and Shao Yanling,Inertially arbitrary patterns,Linear and Multilinear Algebra,2001,49(2):161-168.
  • 3Brualdi,R.A.and Shader,B.L.,Matrices of Sign-solvable Linear Systems,Cambridge:Cambridge University Press,1995.
  • 4Horn,R.A.and Johnson,C.R.,Matrix Analysis,Cambridge:Cambridge University Press,1985.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部