摘要
设S是n阶复符号模式矩阵,若对于任意一个n阶首一复系数多项式f(x),都存在一个复矩阵B∈Q_c(S),使得该矩阵的特征多项式为f(x),则称复符号模式矩阵S是谱任意的。运用中值定理来实现幂零,并用幂零—雅可比方法证明了一个新的复符号模式矩阵是极小谱任意的。
An n x n complex sign pattern matrix S is said to be spectrally arbitrary if for every monic n th degree polynomial f(x) with complex coefficients, there is a complex sign pattern matrix B∈Qc(S) such that its characteristic polynomial is f(x). Nilpotent realization is given by using the intermediate value theorem. It is proven that a new complex sign pattern matrix is minimally spectrally arbitrary by the Nil- potent-Jacobian method.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2015年第6期724-727,共4页
Journal of Natural Science of Heilongjiang University
基金
国家自然科学基金资助项目(11071227)
山西省留学回国人员科研资助项目(12-070)
关键词
复符号模式矩阵
谱任意
幂零一雅可比
蕴含幂零
complex sign pattern matrix
spectrally arbitrary pattern
Nilpotent-Jacobian method
poten-tially nilpotent