期刊文献+

切换时滞神经网络的动力学行为

Dynamical Behavior of Switched Delay Neural Networks
下载PDF
导出
摘要 文章研究时滞切换神经网络的动力学行为。运用非负矩阵谱半径及M-矩阵的性质,建立了一个新的切换不等式。在此不等式的基础上,研究了中立型切换时滞神经网络的指数稳定性,得到了其稳定性的充分判据,去掉了时滞函数的可微性及其导数的有界性,从而改进了一些现有文献的结果,并通过一个实例论证了所获结果的有效性。 This paper studies the dynamical behavior of the switched neural networks with time-delays.By using the properties of the non-negative matrix spectral radius and M-matrix,a new switching inequality is established. Based on the new inequality,this paper investigates the exponential stability of neutral switched neural networks with delays,and obtains the sufficient conditions for ensuring the exponential stability of the considered system. The results is that it no longer requires the differentiability of the delay function and boundedness of its derivative,thus improving the results of some of the existing literature. The validity of the obtained results is demonstrated by an example.
出处 《乐山师范学院学报》 2015年第12期13-20,共8页 Journal of Leshan Normal University
基金 四川省大学生创新创业训练计划项目(No:201410649028)
关键词 切换 神经网络 时滞 指数稳定性 Switched Neural Networks Delay Exponential Stability
  • 相关文献

参考文献8

  • 1S.Long, D.Xu.Global exponential p-stability of stochastic non-antonomous Takagi-Sugeno fuzzy cellular neural networks with time-varying de- lays and impulses[J]. Fuzzy Sets and Systems, 2014(253): 82-100.
  • 2P. Balusubramaniam, M. Ali, Stability analysis of Takagi-Sugeno stochastic fuzzy Hopfleld neural networks with discrete and distributed time varying delays[J]. Neurocomputlng ,2011(74) : 1520-1526.
  • 3S. Long. Attracting and invariant sets of nonlinear neutral differential equations with delays[J]. Advance in Difference Equations, 2012(113) : 1-13.
  • 4T. Rojsiraphisal, P. Niamsup. Exponential stability of certain neutral differential equations[J]. AppL Math. Comput,2010(217):3875-3880.
  • 5宗广灯,张运喜.时滞切换神经网络的稳定性分析[D].曲阜:曲阜师范大学,2010.
  • 6S. Dharani, R. Rakkiyappan, J. Cao. New delay-dependent stability criteria for switched Hopfield neuralnetworks of neutral type with additive time-varying delay components[J]. Neurocomputing, 2015( 151 ) : 827-834.
  • 7C. Zheng, Y. Gu, W. Liang, Z. Wang. Novel delay-dependent stability criteria for switched Hopfield neural networks of neutral type[J]. Neuro- computing , 2015(158) : 117-126.
  • 8Berman, A, Plemmons, Pj: Nonnegative Matrices in Mathematical Sciences[M]. Academic Press, New York , 1979.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部