期刊文献+

一类接触率受到噪声干扰的随机SIS流行病模型研究 被引量:5

Stochastic SIS Epidemic Model with Contract Rate Influenced by Noise
下载PDF
导出
摘要 研究了一类接触率受到环境噪声干扰的随机SIS流行病模型.利用停时理论及Lyapunov分析方法,证明了该随机模型正解的全局存在唯一性与有界性.当相应的确定性模型基本再生数小于1时,证明了随机模型无病平衡点的随机渐近稳定性;当确定性模型基本再生数大于1时,揭示了随机模型的解围绕相应的确定性模型地方病平衡点的振荡行为;当确定性模型基本再生数大于1并且噪声强度较小时,证明了随机模型的解是平均持续的.另外,得到了强度较大的环境噪声可以导致疾病灭绝的结论.最后,数值模拟验证了所得理论结果的正确性. A stochastic SIS epidemic model was analyzed,considering that the contact rate is influenced by environmental noise.The global existence,uniqueness and boundedness of its positive solution were proved by using the stopping time theory and Lyapunov analysis method.The stochastic asymptotical stablility of the disease-free equilibrium point was proved when the corresponding deterministic basic reproduction number is less than 1.It is also shown that the solution of the stochastic model oscillates around the corresponding deterministic endemic equilibrium point when the deterministic basic reproduction number is more than 1,and is of mean persistency when the deterministic basic reproduction number is more than 1 and the noise intensity is small.Besides,it is concluded that the large noise can make the disease extinct.Numerical simulations were carried out to prove the validity of theoretical results.
出处 《上海理工大学学报》 CAS 北大核心 2015年第6期511-516,共6页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(11271260) 上海市一流学科资助项目(XTKX2012) 上海市教委科研创新重点项目(13ZZ116) 上海市研究生创新基金资助项目(JWCXSL1401)
关键词 随机SIS模型 随机稳定性 振荡行为 平均持续 疾病灭绝 stochastic SIS model stochastic stability oscillating behavior mean persistence disease extinction
  • 相关文献

参考文献16

  • 1陆征一,周义仓. 生物数学进展[M].北京: 科学出版社,2006.
  • 2Gumel A B,McCluskey C C,van den Driessche P.Mathematical study of a staged-progression HIV model with imperfect vaccine[J].Bulletin of Mathematical Biology,2006,68(8):2105-2128.
  • 3周艳丽,张卫国.一类具有非单调传染率的SEIRS时滞传染病模型的全局稳定性[J].上海理工大学学报,2014,36(2):103-109. 被引量:4
  • 4Shan C H,Zhu H P.Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds[J].Journal of Differential Equations,2014,257(5):1662-1688.
  • 5Kermack W O,Mckendrick A G.A contribution to the mathematical theory of epidemics[J].Proceedings of the Royal Society of London,1927,115(772):700-721.
  • 6Liu X Z,Stechlinski P.SIS models with switching and pulse control[J].Applied Mathematics and Computation,2014,232:727-742.
  • 7翟院青,原三领,袁艳燕.一类具有变人口规模的含时滞SIS流行病模型的全局稳定性[J].上海理工大学学报,2012,34(3):267-271. 被引量:1
  • 8袁艳燕,原三领,翟院青.一类具有变人口规模的含时滞SIS流行病模型的稳定性分析[J].上海理工大学学报,2012,34(1):27-31. 被引量:2
  • 9Busenberg S,Cooke K L.The effect of integral conditions in certain equations modelling epidemics and population growth[J].Journal of Mathematical Biology,1980,10(1):13-32.
  • 10van den Driessche P,Watmough J.A simple SIS epidemic model with a backward bifurcation[J].Journal of Mathematical Biology,2000,40(6):525-540.

二级参考文献31

  • 1原三领,马知恩,韩茂安.一类含时滞SIS流行病模型的全局稳定性[J].数学物理学报(A辑),2005,25(3):349-356. 被引量:13
  • 2Capasso V. A generalization of the Kermack- Mckendrick deterministic epidemic model [ J ]. Mathematical Biosciences, 1978,42 (1/2) : 41 - 61.
  • 3Liu W M, Levin S A, Iwasa Y. Influence of nonlinear incidence rates upon the behavior of SIRS epidemio-logical models[J]. J Math Biol, 1986,23(2) : 187 - 204.
  • 4RuanSG, Wang W D. Dynamical behavior ofanepidemic model with a nonlinear incidence rate]-J]. Journal of Differential Equations, 2003, 188 (1) : 135 - 163.
  • 5Xiao D M, Ruan S G. Global analysis of an epidemic model with nonmonotone incidence rate [J]. Math Biosci, 2007,208 (2) : 419 - 429.
  • 6Beretta E, Takeuchi Y. Global stability of an SIR epidemic model with time delays[J]. Math Biol, 1995, 33(3) :250 - 260.
  • 7Cooke K L, Van den Driessche P. Analysis of an SEIRS epidemic model with two delays[J]. J Math Biolo, 1996,35 (2) :240 - 260.
  • 8Beretta E,I-Iara T, Ma W B, et al. Global asymptotic stability of an SIR epidemic model with distributed time delay[J]. Nonlinear Analysis, 2001,47 (6) : 4107 - 4115.
  • 9Xu R, Ma Z E. Global stability of an SIR epidemic model with nonlinear incidence rate and time delay[J]. Nonlinear Analysis: Real World Applications, 2009,10(5) : 3175 - 3189.
  • 10Xu R, Ma Z E. Global stability of a delayed SEIRS epidemic model with saturation incidence rate[J] Nonlinear Dynamics, 2010,61 (1/2 ) : 229 - 239.

共引文献9

同被引文献17

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部