期刊文献+

CBS安检图像中人体携带物特征提取与形状识别

Feature Extraction and Recognition of the Concealed Object Based on CBS's Human Body Image
下载PDF
导出
摘要 基于全局分割与局部分割相结合的两层次阈值分割方法提取出人体携带物,在Hu不变矩基础上引入其他基于几何特征的分量建立了人体携带物特征表达向量模型,通过设计的三层BP神经网络模型实现对人体携带物的形状识别。实验表明:构建的形状特征表达向量和神经网络模型能有效应用于CBS图像中人体携带物的自动检测与识别;对手枪、管制刀具、扳子、钳子等携带物进行形状识别,准确率为90%。 Based on our double- level segmentation method including global segmentation and local segmentation for extracting concealed object,this paper proposes a new feature vector model composed of Hu invariant moments and other geometric- based feature vector components,and then adopts three- layer BP network model to identify concealed object under clothing. Experiments confirm that our method is effective for automatic detection and recognition of the concealed object under clothing,and the recognition rate of handguns,controlled knives,spanners and pliers is 90%.
出处 《核电子学与探测技术》 CAS 北大核心 2015年第7期703-706,共4页 Nuclear Electronics & Detection Technology
基金 国家科技支撑计划项目(2012BAK03B06) 天津市科技特派员项目(14JCTPJC00517)资助
关键词 康普顿背散射(CBS) 特征向量 神经网络 人体安检 Compton back scattering feature vector neural network security inspection body scanner
  • 相关文献

参考文献11

  • 1Trofimov VA, Trofimov VV, LgorE. Kuchik. Expanded opportunities of THz passive camera for the detection of concealed objects [ C ]. The 6th Intemati0nal Con- ference on MiUimetre Wave and Terahertz Sensors and Technology, SEP 24 - 25,2013, Dresden, GERM&-NY.
  • 2Shahan Nereessian, Karen Panetta, Agaian. S. Auto- matic Detection of Potential Threat Objects in X - ray Luggage Scan Images [ C ]. Technology for Homeland Security 2008 IEEE Conference,2008:504 - 509.
  • 3王勇.X射线背散射成像技术在安检中的应用[J].中国安防,2012(1):118-121. 被引量:10
  • 4王怀颖,章毓晋,杨立瑞,李东.基于CBS的人体安检图像组合增强方法[J].核电子学与探测技术,2011,31(1):17-21. 被引量:4
  • 5Agurto A, Li Y, Tian G, et al. A review of concealed weapon detection and research in perspective [ C ]. IEEE International Conference on Networking, Sensing and Control. APR 15 -17 2007 ,London,England.
  • 6Williams I, Svoboda D, Bowring N, et al. Statistical edge detection of concealed weapons using artificial neural networks [ C ]. Conference on Image Processing - Algorithms and Systems VI,JAN 28 -29 2008,San Jose, CA.
  • 7Kapilevich B, Litvak B, Shulzinger A, et al.. Portable Passive Millimeter - Wave Sensor for Detecting Con- cealed Weapons and Explosives Hidden on a Human Body [ J ], IEEE Sensors Journal, 2013, 13 : 4224 - 4228.
  • 8Weidi Dai, Wei Mei, Xiaodong Zhao. Detection and Segmentation of Concealed Objects in X - ray Comp- ton Backscatter Images [ C ], ICIG2013, Qingdao, Chi-na.
  • 9Becker, Matthias, Nadia Magnenat - Thalmann. 3D Multi - scale Physiological Human [ M ]. Springer London, 2014 : 81 - 106.
  • 10Yang,Gao X,Tao X,et al. An Efl3cient MRF Em- bedded Level Set Method for Image Segmentation[ J]. IEEE Trans. Image Process,2015,24( 1 ) :9 -21.

二级参考文献5

  • 1邵立康,迟权德,刘俊旭,童利标,韩裕生.基于CBS的人体安检系统总体设计[J].CT理论与应用研究(中英文),2005,14(2):6-9. 被引量:1
  • 2Shahan Nercessian,Karen Panetta,Sos Again.Automatic Detection of Potential Threat Objects in X-ray Luggage Scan Images[C].Technology for Homeland Security 2008 IEEE Conference,2008:504-509.
  • 3Krlstoph D.Krug,Framingham.Identifying Explosives or Other Contraband by Employing Transmitted or Scattered X-rays[C].U.S.Patent,1999,5974111.
  • 4章毓晋.图象工程(中册):图象处理和分析[M].北京:清华大学出版社,2007.
  • 5冈萨雷斯.数字图像处理[M].北京:电子工业出版社,2003..

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部