摘要
为弥补小波变换的不足,采用基于双树复小波变换的方法进行图像融合。在对源图像进行双树复小波分解后,综合考虑了图像的高低频成分,对低频成分采用区域平均能量择大的融合规则,高频成分采用局部标准差结合选择及加权平均的策略,最后采用双树复小波逆变换重构图像。经多聚焦及多光谱图像的融合实验及主客观考核,结果表明:融合后的图像更清晰地反映了源图像的细节信息,融合质量相对较高。
To make up for the lack of wavelet transform,this paper uses a method based on dual- tree complex wavelet transform( DT- CWT) for image fusion. After decomposing the source image by DT- CWT,this algorithm considers both low- frequency and high- frequency components of the image. The low- frequency components are fused by the choose- max strategy with the local average energy; the high- frequency components use the local- standard- deviation to being the basis of selective and weighted- averaging fusion method. Finally the inverse DT- CWT is used to reconstruct the image. Experiments of multi- focus images and multi-spectral images and subjective and objective assessment results reveal that the fused image clearly reflects the details of the image,and that the fusion quality is relatively high.
出处
《核电子学与探测技术》
CAS
北大核心
2015年第7期726-728,737,共4页
Nuclear Electronics & Detection Technology
基金
国家自然基金(61171179
61227003
61301259)
山西省自然科学基金(2012021011-2)资助
关键词
双树复小波变换
图像融合
区域平均能量
局部标准差
Dual Tree Complex Wavelet Transform(DT-CWT)
image fusion
local average energy
local standard deviation