摘要
假设(Xt,Px)是与L2(E;m)上的半狄氏型(E,D(E))相联系的右过程.μ为符号光滑测度,Aμt为μ对应的连续可加泛函.定义广义Feynman-Kac半群Pμtf(x)∶=E[e-Aμtxf(Xt)].设Eμ(f,g)=E(f,g)+(f,g)μ,f,g∈D(Eμ)=D(E)∩L2(E,|μ|),我们得到以下两个命题等价:①(Eμ,D(Eμ))是下半有界的;②对任意的t>0,存在一个常数α0≥0使得‖Pμt‖2≤eα0t.如果①和②中有一个成立,则(Pμt)t≥0是L2(E;m)上强连续的半群.
Suppose( Xt,Px) is a right continuous process associated with a semi-Dirichlet form( E,D( E)) on L2( E; m). Let μ be a signed smooth measure and Aμtbe the continuous additive functional corresponding to μ. DefinePμtf( x) ∶ = E[e- Aμtxf( Xt) ].and Eμ( f,g) = E( f,g) +( f,g)μμ,f,g ∈ D( E) = D( E) ∩ L2( E,| μ |),We get the following two statements are equivalent. ①( Eμ,D( Eμ)) is lower semi-bounded. ②For any t〉 0,there exists a constant αμ0≥ 0 such that ‖Pt‖2≤ eα0t. Moreover,if one of these holds,( Pμt)t≥0is strongly continuous on L2( E; m).
出处
《北京交通大学学报》
CAS
CSCD
北大核心
2015年第6期126-130,共5页
JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金
国家自然科学基金资助项目(11201102
11326169
11361021)
海南省自然科学基金资助项目(112002
113007)