摘要
设x是复Banach空间,且dim x≥2,B(x)是X上有界线性算子全体组成的Banach代数,(B)A,B∈B(x),定义拟积A·B=A+B-AB,则(B(x),·)是半群.本文主要考虑了B(x)上的拟积自同构,证明了B(x)上的双射φ是拟积自同构的充要条件是φ是环自同构.
Let B(X) be the algebra of all bounded linear operators on a complex Banach space 2d with dim X≥2. For A, B ∈ B(X), we define a quasi-product by A o B = A + B - AB, then (B(X), o) is a semi-group. In this article, we consider the quasi-automorphism on B(X). It is proved that a bijective map on B(X) is a quasi-isomorphism if and only if to is a ring isomorphism.
出处
《数学进展》
CSCD
北大核心
2016年第1期111-116,共6页
Advances in Mathematics(China)
基金
国家自然科学基金(No.11371233)
关键词
拟积
拟同构
环同构
quasi-product
quasi-isomorphism
ring isomorphism