期刊文献+

B(χ)的拟同构 被引量:3

Quasi-automorphisms on B(X)
原文传递
导出
摘要 设x是复Banach空间,且dim x≥2,B(x)是X上有界线性算子全体组成的Banach代数,(B)A,B∈B(x),定义拟积A·B=A+B-AB,则(B(x),·)是半群.本文主要考虑了B(x)上的拟积自同构,证明了B(x)上的双射φ是拟积自同构的充要条件是φ是环自同构. Let B(X) be the algebra of all bounded linear operators on a complex Banach space 2d with dim X≥2. For A, B ∈ B(X), we define a quasi-product by A o B = A + B - AB, then (B(X), o) is a semi-group. In this article, we consider the quasi-automorphism on B(X). It is proved that a bijective map on B(X) is a quasi-isomorphism if and only if to is a ring isomorphism.
出处 《数学进展》 CSCD 北大核心 2016年第1期111-116,共6页 Advances in Mathematics(China)
基金 国家自然科学基金(No.11371233)
关键词 拟积 拟同构 环同构 quasi-product quasi-isomorphism ring isomorphism
  • 相关文献

参考文献11

  • 1Amberg, B. and Sysak, Y.P., Radical rings with Engel conditions, J. Algebra, 2000, 231: 364-373.
  • 2Amberg, B. and Sysak, Y.P., Associative rings whose adjoint semigroup is locally nilpotent, Arch. Math. (Basel), 2001, 76(6): 426-435.
  • 3Hille, E. and Phillips, R.S., Functional Analysis and Semi-groups, Providence, R.I.: AMS, 1957, 680-694.
  • 4Jacobson, N., The radical and semi-simplicity for arbitrary rings, Amer. J. Math., 1945, 67: 300-320.
  • 5Kaplansky, I., Topological rings, Amer. Jo Math., 1947, 69: 153-183.
  • 6Krasil'nikov, A.N., On the semigroup and Lie nilpotency of associative algebras, Mat. Zametki, 1997, 62: 510-519 (Translated in: Math. Notes, 1997, 62(4): 426-433).
  • 7Liu, C.K. and Tsai, W.Y., Jordan isomorphisms of upper triangular matrix rings, Linear Algebra Appl., 2007, 426(1): 143-148.
  • 8Liu, L. and Ji, G.X., Maps preserving product X*Y + YX* on factor yon Neumann algebras, Linear Multi- linear Algebra, 2011, 59(9): 951-955.
  • 9Lu, F.Y., Characterizations of derivations and Jordan derivations on Banach algebras, Linear Algebra Appl., 2009, 430(8/9): 2233-2239.
  • 10Qi, X.F., Hou, J.C. and Deng, J., Lie ring isomorphisms between nest algebras on Banach spaces, J. Funct. Anal., 20145 266(7): 4266-4292.

同被引文献1

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部