期刊文献+

一个正规的Moore仿拓扑群(英文) 被引量:2

A Normal and Moore Paratopological Group
原文传递
导出
摘要 本文证明了在假设MA+( ┐CH)下,存在一个不可度量化的、可分的、正规的Moore仿拓扑群.因此,存在一个可分的、正规的、不可度量化的Moore仿拓扑群独立于一般集论公理. In this paper, we prove the following: under MA+(-CH), there exists a non- metrizable, separable, normal and Moore paratopological group. Therefore the existence of a separable, normal, non-metrizable Moore paratopological group is independent of the usual axioms of Set Theorem.
作者 林寿 林福财
出处 《数学进展》 CSCD 北大核心 2016年第1期153-158,共6页 Advances in Mathematics(China)
基金 supported by NSFC(No.11201414,No.11171162,No.11471153) the Natural Science Foundation of Fujian Province(No.2012J05013) the Training Programme Foundation for Excellent Youth Researching Talents of Fujian's Universities(No.JA13190) the Foundation of the Education Department of Fujian Province(No.JA14200)
关键词 仿拓扑群 Moore空间 正规空间 Q集 paratopological groups Moore spaces normal spaces Q-sets
  • 相关文献

参考文献19

  • 1Arhangel'skii, A.V. and Reznichenko, E.A., Paratopological and semitopological groups versus topological groups, Topology Appl., 2005, 151(1/2/3): 107-119.
  • 2Arhaugel'skii, A.V. and Tkachenko, M., Topological Groups and Related Structures, Paris: Atlantis Press, 2008.
  • 3Engelking, R., General Topology (Revised and Completed Edition), Berlin: Heldermann Verlag, 1989.
  • 4Fleissner, W.G. and Reed, G.M., ParalindelSf spaces and spaces with a -locally countable base, Topology Proc., 1977, 2(1): 89-110.
  • 5Gruenhage, G., Generalized metric spaces, In: Handbook of Set-Theoretic Topology (Kunen, K. and Vaughan, J.E. eds.), Amsterdam: North-Holland, 1984, 423-501.
  • 6Heath, R.W., Screenability, pointwise paracompactness and metrization of Moore spaces, Canad. J. Math., 1964, 16: 763-770.
  • 7Kakutani, S., Uber die Metrisation der topologischen Gruppen, Proc. Imperial Acad. Tokyo, 1936, 12(4): 82-84 (in German).
  • 8Li, P.Y., Mou, L. and Wang, S.Z., Notes on questions about spaces with algebraic structures, Topology Appl., 2012, 159(17): 3619-3623.
  • 9Birkhoff, G., A note on topological groups, Compos. Math., 1936, 3: 427430.
  • 10Lin, F.C., A note on free paxatopological groups, Topology Appl., 2012, 159(17): 3596-3604.

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部