期刊文献+

多尺度局部区域响应累积的非滑窗快速目标检测算法 被引量:2

Fast Object Detection Algorithm with Non-sliding Window Based on Accumulation of Multi-scale Local Response
下载PDF
导出
摘要 针对滑动窗口全局搜索检测目标搜索时间长的问题,提出一种多尺度局部区域响应累积的非滑窗快速目标检测算法。首先,提取检测目标多尺度可重叠局部区域作为训练样本,通过学习得到多尺度且具有判别能力的部件集,部件集中每个局部区域与检测目标有明确位置对应关系;然后,根据各投影检测器响应判断目标是否在某一区域出现,并利用多尺度目标局部区域的检测结果和位置约束进行投票,完成目标粗定位;其次,利用HOG特征提取和SVM相结合完成检测目标验证实现准确检测。该方法将多尺度部件模型、统计累积投票思想及分类器判决相结合,实现快速目标检测,大大减少滑动窗口逐像素搜索背景时所消耗时间,提高检测效率。 Exhaustive search method of sliding window which consumes much time in searching the location is used to de- tect objects. In order to solve this problem, we propose a fast object detection algorithm with non-sliding window based on accumulation of multi-scale local response. Firstly, the multi-scale and foldable local areas are extracted as the training sample, then learning them to obtain a part sets with multi-scale and discriminative ability, in which every local area and object have a definely position corresponding relationship; Secondly, the appearance of a particular area is based on every projection detector's response and the object's positions are determined by using voting shceme with multi-scale object detec- tion results of the local area and the position constraint; Finally, we test the object by combining the HOG feature extraction with the classifier of SVM to realize accurate location. Experimental results show that the proposed method which combining multi-scale part model and statistics of cumulative voting and the classifier of SVM improves the detection efficiency via sav- ing the consumed time of the sliding window pixel-by-pixel searches background.
出处 《信号处理》 CSCD 北大核心 2016年第1期37-45,共9页 Journal of Signal Processing
基金 国家自然科学基金(61071199) 河北省自然科学基金(F2010001297)
关键词 目标检测 非滑窗 多尺度 统计累积投票 部件模型 object detection non-sliding window multi-scale statistics of cumulative voting part based model
  • 相关文献

参考文献18

  • 1Navneet Dalal, Bill Triggs. Histograms of oriented gradi- ents for human detection [ C ]//IEEE Conference on Com- puter Vision and Pattern Recognition, 2005:886-893.
  • 2Zhu Qiang, Avidan Shai, Yeh Meichen. Fast human de- tection using a cascade of histograms of oriented gradients [ C]//IEEE Conference on Computer Vision and Pattern Recognition, 2006 : 1491-1498.
  • 3Chan Yiming, Fu Lichen, Hsiao Peiyung, et al. Pedes- trian detection using histograms of oriented gradients of granule feature [ C ]//IEEE Intelligent Vehicles Symposi- um, 2013:1410-1415.
  • 4Ren Xiaofeng, Ramanan Deva. Histograms of sparse codes for objectCl//IEEE Conference on Computer Vision and Pattern Recognition, 2013:3246-3253.
  • 5Okado Wataru, Goto Tomio, Hirano Satoshi, et al. Fast and high-quality regional histogram equalization [ C ]// IEEE Global Conference on Consumer Electronics, 2013 : 445- 446.
  • 6Satpathy Amit, Jiang Xudong, Eng How-Lung. Humandetection by quadratic classification on subspace of ex- tended histogram of gradients [ J ]. IEEE Transactions on Image Processing, 2014, 23 ( 1 ) :287-297.
  • 7Felzenszwalb Pedro F, Girshick Ross B, McAllester David, et al. Object detection with discriminatively trained part- based models [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9):1627-1645.
  • 8Felzenszwalb Pedro F, Girshick Ross B, McAllester Da- vid. Cascade object detection with deformable part models [ C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010:2241-2248.
  • 9Pedersoli Marco, Vedaldi Andrea, Gonzalez Jordi. A coarse- to-fine approach for fast deformable object detection [ C ]// IEEE Conference on Computer Vision and Pattern Recog- nition. 2011 : 1353-1360.
  • 10Azizpour Hossein, Laptev Ivan. Object detection using strongly-supervised deformable part models [ M ]. Euro- pean Conference on Computer Vision, 2012:836-849.

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部