期刊文献+

蜂群优化神经网络的频谱感知 被引量:4

A Neural Network Spectrum Sensing Algorithm Using Bee Colony Optimization
下载PDF
导出
摘要 由于神经网络训练收敛速度慢、易陷入局部最优解,而最优解对神经网络的频谱感知算法性能影响大,因此为提高神经网络的频谱感知算法性能,采用蜂群算法交叉训练神经网络,加快训练收敛速度,降低均方误差。采用信号的能量、循环功率谱作为特征参数,提出了蜂群优化神经网络的频谱感知算法。仿真结果表明,在给定迭代次数下,相比能量法、循环平稳特征法、无蜂群算法交叉训练神经网络或RBF神经网络的频谱感知算法,本文算法具有更好的感知性能。 Neural network is easy to converge on local optimal solution, and its training convergence speed is slow. In ad- dition, the optimal solution has a deep influence on performance of a spectrum sensing algorithm of neural network. There- fore, neural network is cross-trained by bee colony algorithm to accelerate the training convergence speed and to reduce the mean square error so as to improve the performance of a neural network spectrum sensing algorithm. Using signal energy and spectral correlation as feature parameters, a neural network spectrum sensing algorithm using bee colony optimization is proposed. Simulation results show that with a certain number of iterations, the proposed algorithm has better sensing per- formance compared with the spectrum sensing algorithm based on energy detection, the spectrum sensing algorithm based on cyclostationary, the neural network spectrum sensing algorithm without bee colony cross training and spectrum sensing algo- rithm based on RBF neural network.
出处 《信号处理》 CSCD 北大核心 2016年第1期77-82,共6页 Journal of Signal Processing
关键词 频谱感知 神经网络 蜂群算法 特征提取 spectrum sensing neural network bee colony algorithm feature extraction
  • 相关文献

参考文献11

  • 1Federal Communications Commission. Spectrum Policy Task Force Report[ R]. ET Docket, 2002: 2-135.
  • 2Zhang L, Huang J, Tang C. Novel Energy Detection Scheme in Cognitive Radio[C]//IEEE International Conference on Signal Processing, Communications and Computing (IC- SPCC), 2011 : 1-4.
  • 3Smitha K G, Vinod A P. A Multi-Resolution Fast Filter Bank for Spectrum Sensing in Military Radio Receivers [ J ]. Very Large Scale Integration ( VLSI ) Systems, IEEE Transactions on, 2012, 20(7): 1323-1327.
  • 4王红军,毕光国.一种改进的认知无线电循环功率谱特征检测算法[J].信号处理,2010,26(7):1089-1093. 被引量:6
  • 5Yucek T, Arslan H. A Survey of Spectrum Sensing Al- gorithms for Cognitive Radio Applications [ J ]. Com- munications Surveys & Tutorials, IEEE, 2009, 11 (1) : 116-130.
  • 6Yu-Jie T, Qin-yu Z, Wei L. Artificial Neural Network Based Spectrum Sensing Method for Cognitive Radio [ C]///Wireless Communications Networking and Mobile Computin (WiCOM' 9NtN. 1_4.
  • 7马成前,王庆喜.基于局部及全局误差的BP神经网络研究[J].武汉理工大学学报,2009,31(20):99-101. 被引量:12
  • 8皮亦鸣,付毓生,黄顺吉.采用进化计算的BP神经网络学习算法研究[J].信号处理,2002,18(3):261-264. 被引量:5
  • 9Kaswan K S, Choudhary S, Sharma K. Applications of Ar- tificial Bee Colony Optimization technique : Survey [ C ] // Computing for Sustainable Global Development (INDIA- Corn), 2015 : 1660-1664.
  • 10Celal Ozturk, Dervis Karaboga. Hybrid Artificial Bee Colony Algorithm for Neural Network Training[ C ] //2011 IEEE Congress on Evolutionary Computation (CEC), 2011 : 84- 88.

二级参考文献18

  • 1蒲春,孙政顺,赵世敏.Matlab神经网络工具箱BP算法比较[J].计算机仿真,2006,23(5):142-144. 被引量:68
  • 2王静伟.BP神经网络改进算法的研究.中国水运,2008,8(1):157-158.
  • 3[1]D.J.Montana, et al, "Training feedforward neural network using genetic algorithm", Proceedings of the Eleventh International Joint Conference on Artificial Intelligence,pp. 762-767, 1989.
  • 4[2]D.E. Rumelhart, et al, "Learning internal representations by error propagation", Parallel Distributed Processing,Vol. l, pp.318-362, D. E. Rumelhart and J. L. McCleland,Eds. MIT Press, USA, 1986.
  • 5[3]M. Baba, "A new approach for finding the global minimum of error function of neural networks", Neural Networks, Vol.2, pp.367-373, 1989.
  • 6I. Jacobs. Energy detection of Gaussian communication signals [ EB/OL]. Proc. lOth Nat'l Communication Symp. 1965:440-448.
  • 7Danijela and W. Brodersen. Physical layer design issues unique to cognitive radio system[ C-. 2005 IEEE 16th International Symposium, Berlin Germany, 2005 : 11-14.
  • 8M. Oner and F. Jondral. Air interface recognition for a software radio system exploiting cyclostationarity [ J ]. in IEEE Int. Conf. on Personal, Indoor and Mobile Radio Communications, Sept. 2004.
  • 9FCC. FCC-03-322 Facilitating Opportunities for Flexible, Efficient, and Reliable Spectrum Use Employing Cognitive Radio Technologies [ EB/OL]. FCC Document ET Docket, 2003, No. 03-108.
  • 10J. Mitola etal. Cognitive radio: Making software radios more personal[J]. IEEE Pres. Commmun, 1999: 13- 18.

共引文献20

同被引文献21

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部