期刊文献+

多级升温及降温引起的饱和红黏土的热响应试验研究 被引量:10

An experimental study of thermal response of saturated red clay subjected to progressively heating and cooling processes
下载PDF
导出
摘要 对温度和围压耦合作用下饱和红黏土的热力学特性进行多级升温及降温过程的室内试验研究。试验包括每级温度变化之间允许试样排水和不允许试样排水两组对比试验,温度变化等级为20℃→40℃→50℃→60℃→70℃→80℃→70℃→60℃…→20℃,围压包括50、100、150、200 k Pa共4种。分析了试样热固结过程中温度、孔隙水压力、固结体应变的演变过程以及热力学特征变化机制。研究表明,在多级升温级间排水以及后续逐级降温过程中,温度诱致孔隙水压力消散引起的固结排水量大于温度再降低至初始温度下的吸水量,最终表现为不可逆的体积收缩变形。另一方面,在多级升温级间不排水以及逐级降温条件下,温度升高后的孔隙水压力甚至可达到围压值,然后降至初始环境温度下时试样内仍保持较大的孔隙水压力,也表现为不可逆的热力学过程。 The thermal properties of saturated red clay subjected to progressively heating and cooling processes are experimentally studied under the combining impact of temperature and confining pressure. Two kinds of tests with and without drainage between temperature stages at four confining pressures(50, 100, 150 and 200 k Pa respectively) are performed. The temperature is appliedsequentially as 20 ℃→40 ℃→50 ℃→60 ℃→70 ℃→80 ℃→70 ℃→60 ℃…→20 ℃. In this study, the evolutions of temperature, pore pressure, volumetric strain, and the related thermodynamical mechanisms are analyzed. It is shown that during progressively heating/cooling with drainage between temperature stages, the volumetric strain due to the pore pressure dissipation associated with heating are greater than that due to the latter compression induced by negative pore pressure after progressively cooling, and eventually induces an irreversible shrinkage deformation. On the other hand, during progressively heating/cooling without drainage between temperature stages, the pore pressure induced by heating can even reach the applied confining pressure, and then maintains a significant residual pore pressure when the temperature of specimens falls to the initial temperature, revealing also an irreversible thermodynamic processes.
出处 《岩土力学》 EI CAS CSCD 北大核心 2016年第1期25-32,共8页 Rock and Soil Mechanics
基金 国家自然科学基金资助项目(No.51478034 No.51279002) 高等学校博士学科点专项科研基金博导类资助课题(No.20130009110021)~~
关键词 红黏土 热响应 孔隙水压力 升温-降温过程 不可逆热力学 red clay thermal response pore pressure heating/cooling processes irreversible thermodynamics
  • 相关文献

参考文献12

  • 1GHEMBAZA M S,TA?BI S,FLEUREAU J M.Thermo-hydro-mechanical behaviour of a sandy clay on isotropic paths[J].European Journal of Environmental and Civil Engineering,2014,18(2):206-222.
  • 2CHEN G J,SILLEN X,VERSTRICHT J,et al.ATLAS III in situ heating test in boom clay:Field data,observation and interpretation[J].Computers and Geotechnics,2011,38(5):683-696.
  • 3CHEN L,LIU Y M,WANG J,et al.Investigation of the thermal-hydro-mechanical(THM)behavior of“GMZ”bentonite in the China-Mock-up test[J].Engineering Geology,2014,172:57-68.
  • 4姚仰平,万征,杨一帆,牛雷.饱和黏土不排水剪切的热破坏[J].岩土力学,2011,32(9):2561-2569. 被引量:12
  • 5WIESNER E.Weathering beneath lateritic profiles[J].Bulletin Engineering and Geological Environment,1999,58:71-74.
  • 6GAO G R.The distribution and geotechnical properties of loess soils,lateritic soils and clayey soils in China[J].Engineering Geology,1996,42:95-104.
  • 7XiaoMinggui,WangJieguang,ChenXuejun.Material Composition and Engineering Characteristics of Red Clay in Guigang, Guangxi[J].Journal of China University of Geosciences,2005,16(1):84-88. 被引量:4
  • 8TANAKA H,TSUTSUMI A.Combined effects of strain rate and temperature on consolidation behavior of clayey soils[J].Soils and Foundations,2012,52(2):207-215.
  • 9MASIN D,KHALILI N.A thermo-mechanical model for variably saturated soils based on hypoplasticity[J].International Journal for Numerical and Analytical Mathematical Geomechanics,2012,36:1461-1485.
  • 10ALRTIMI A,ROUAINIA M,MANNING D A C.An improved steady-state apparatus for measuring thermal conductivity of soils[J].International Journal of Heat and Mass Transfer,2014,72:630-636.

二级参考文献26

  • 1陈正汉,谢云,孙树国,方祥位,李刚.温控土工三轴仪的研制及其应用[J].岩土工程学报,2005,27(8):928-933. 被引量:28
  • 2BALDI G, HUECKEL T, PELLEGRINI R. Thermal volume change of the mineral-water system in low-porosity clay soils[J]. Canadian Geotechnical Journal, 1988, 25(4): 807-825.
  • 3BOURROS C M. The effect of temperature change on consolidation and shear strength of saturated cohesive soils[D]. USA: University of Washington, 1973.
  • 4JEFFERSON I, ROGERS C D F, SMALLEY I J. Discussion: 'Temperature effects on undrained shear characteristics of clay' by Kuntiwattanakul et al[J]. Soils and Foundations, 1996, 36(3): 141 - 143.
  • 5HUECKEL T, PEANO A, PELLEGRINI R. A constitutive law for thermo-plastic behaviour of rocks: An analogy with clays[J]. Surveys in Geophysics, 1993, 15(5): 643-671.
  • 6PISIT K, IKUO T, KANTA O, et al. Temperature effects on undrained shear characteristics of clay[J]. Soils and Foundations, 1995, 35(1): 147- 162.
  • 7HUECKEL T, BORSETTO M, PEANO A. Modelling of coupled thermo-elasto-plastic-hydraulic response of clays subjected to nuclear waste heat[M]. Chichester: John Wiley, 1987: 213-235.
  • 8HUECKEL T, BALDI G. Thermoplasticity of saturated clays: Experimental constitutive study[J]. Journal of Geoteehnieal Engineering, 1990, 116(12): 1778- 1796.
  • 9HUECKEL T. Water-mineral interaction in hydromechanics of clays exposed to environmental loads: A mixture-theory approach[J]. Canadian Geoteehnieal Journal, 1992, 29(6): 1071- 1086.
  • 10DEL OLMO C, FIORAVANTE V, GERA F, et al. Thermomechanical properties of deep argillaceous formations[J]. Engineering Geology, 1996, 41(1-4): 87 - 102.

共引文献23

同被引文献104

引证文献10

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部