期刊文献+

基于张量分解的多声道音频恢复方法

Multi-Channel Audio Recovery Based on Tensor Decomposition
下载PDF
导出
摘要 为恢复多声道音频在采集过程中丢失的数据,提出基于加权优化的张量分解方法.首先用张量对音频建模,并且根据其尺寸定义一个标识数据丢失位置的加权张量,然后使用加权最小二乘问题描述CANDECOMP/PARAFAC(CP)模型并通过一阶优化算法求解,最终通过获得的因子矩阵恢复音频.通过不同数目通道数据丢失的隐藏参考和基准的多激励测试,说明针对丢失数据采用CP分解方法是有效的,即张量分解能够得到较好的音频恢复效果. In order to recover the missing data of multi-channel audio during collection,an efficient tensor decomposition method was proposed based on weight optimization.Firstly,multi-channel audio was represented as an audio tensor.A weight tensor of the identical size as audio tensor was defined,and which identified the location of missing channel data.Afterward,the CANDECOMP/PARAFAC decomposition(CPD)was formulated as a weighted least squares problem which was solved by using a first-order optimization approach.At last,the audio were recovered via achieved factor matrices.In experiments about varying number of missing channel entries,the results of multiple stimuli with hidden reference and anchor show that it is validated by CPD of multi-channel audio in the presence of missing data,and tensor decomposition is a successful approach for recover audio.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2015年第11期1183-1188,共6页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(61473041 11461141004) 内蒙古高校科研项目(NJZY13139)
关键词 音频恢复 张量分解 因子矩阵 CANDECOMP/PARAFAC模型 audio recovery tensor decomposition missing data CANDECOMP/ PARAFAC model
  • 相关文献

参考文献12

  • 1谢菠荪.头相关传输函数与虚拟听觉重放[J].中国科学(G辑),2009,39(9):1268-1285. 被引量:12
  • 2Zhang Mengqiu, Zhang Wen, Rodney A K. HRTF measurement on KEMAR manikin[C]//Proceedings of Acoustics. Adelaide, Austrialia:Australian Acoustical Society, 2009:10-17.
  • 3Acar E, Dunlavy D M, Kolda T G, et al. Scalable tensor factorizations with missing data[C]//Proceedings of the 10th SIAM International Conference on Data Mining. Columbus, OH, USA:[s.n.], 2010:701-712.
  • 4Tan Huachun, Cheng Bin, Wang Guangdong, et al. Tensor completion via a multi-linear low-n-rank factorization model[J]. Neurocomputing, 2014,133:161-169.
  • 5Weiland S, Belzen F N. Singular value decompositions and low rank approximations of tensors[J]. IEEE Trans on Signal Processing, 2010,58(3):1171-1182.
  • 6Cichocki A, Zdunek R, Phan A H, et al. Nonnegative matrix and tensor factorizations[M]. Chichester, WS:John Wiley & Sons, 2009:28-31.
  • 7Acar E, Kolda T G, Dunlavy D M. An optimization approach for fitting canonical tensor decompositions[R]. Albuquerque, New Mexico, USA:Sandia National Laboratories, 2009.
  • 8Wu Qiang, Zhang Liqing, Shi Guangchuan. Robust multifactor speech feature extraction based on gabor analysis[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2011,19(4):927-936.
  • 9Elayyadi I, Benbernoua S, Ouziri M, et al. A tensor-based distributed discovery of missing association rules on the cloud[J]. Future Generation Computer Systems, 2014,35:49-56.
  • 10Kim H J, Ollila E, Koivunen V, et al. Robust and sparse estimation of tensor decompositions[C]//Proceedings of 2013 IEEE Global Conference on Signal and Information Processing. Austin, Texas, USA:IEEE, 2013:965-968.

二级参考文献21

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部