摘要
对于n×n复符号模式S,若给定任意一个n阶首1复系数多项式f()λ,都存在一个复矩阵B∈Q(S),使得它的特征多项式为f()λ,则称S是谱任意的.若S是谱任意的,且它的任意真子模式都不是谱任意的,那么S是极小谱任意的.本文用扩展了的幂零—雅可比方法证明一个复符号模式是极小谱任意的.
An n × n complex sign pattern S is a spectrally arbitrary pattern if given any monic polynomial f(λ) with coefficients from C of order n,there exists a complex sign pattern B in Q( S) such that its characteristic polynomial is f(λ). If S is a spectrally arbitrary,and no proper subpattern of S is spectally arbitrary,then S is a minimal spectrally arbitrary complex sign pattern. In this paper we use extended Nilpotent- Jacobian method to prove a complex sign pattern is minimally spectrally arbitrary.
出处
《商丘师范学院学报》
CAS
2015年第12期8-12,共5页
Journal of Shangqiu Normal University
基金
山西省回国留学人员科研资助项目(12-070)
关键词
复符号模式
蕴含幂零
谱任意
幂零—雅可比
complex sign pattern
potentially nilpotent
spectrally arbitrary
nilpotent-jacobian