期刊文献+

一个极小谱任意的复符号模式

A minimally spectrally arbitrary complex sign pattern
下载PDF
导出
摘要 对于n×n复符号模式S,若给定任意一个n阶首1复系数多项式f()λ,都存在一个复矩阵B∈Q(S),使得它的特征多项式为f()λ,则称S是谱任意的.若S是谱任意的,且它的任意真子模式都不是谱任意的,那么S是极小谱任意的.本文用扩展了的幂零—雅可比方法证明一个复符号模式是极小谱任意的. An n × n complex sign pattern S is a spectrally arbitrary pattern if given any monic polynomial f(λ) with coefficients from C of order n,there exists a complex sign pattern B in Q( S) such that its characteristic polynomial is f(λ). If S is a spectrally arbitrary,and no proper subpattern of S is spectally arbitrary,then S is a minimal spectrally arbitrary complex sign pattern. In this paper we use extended Nilpotent- Jacobian method to prove a complex sign pattern is minimally spectrally arbitrary.
机构地区 中北大学理学院
出处 《商丘师范学院学报》 CAS 2015年第12期8-12,共5页 Journal of Shangqiu Normal University
基金 山西省回国留学人员科研资助项目(12-070)
关键词 复符号模式 蕴含幂零 谱任意 幂零—雅可比 complex sign pattern potentially nilpotent spectrally arbitrary nilpotent-jacobian
  • 相关文献

参考文献7

  • 1Drew J H, Johnson C R, Olesky D D, et al. Spectrally arbitrary patterns [ J ]. Linear Algebra and its Applications, 2000, 308 ( l ) : 121 - 137.
  • 2Cavers M S, Vander Meulen K N. Spectrally and inertially arbitrary sign patterns [ J ]. Linear Algebra and its App|ications, 2005, 394:53 - 72.
  • 3McDonald J J, Stuart J. Spectrally arbitrary ray patterns[ J ]. Linear Algebra and its Applications ,2008,429:727 -734.
  • 4Cavers M S, Kim I J, Shader B L, Vander Meule K N. On determining minimal spectrally arbitrary pattern [ J ]. The Electronic Journal of Linear Algebra,2005,13:240 - 248.
  • 5Britz T, McDonald J J, Olesky D D, et al. Minimal spectrally arbitrary sign patterns [ J ]. SIAM Journal on Matrix Analysis and Applications, 2004, 26 ( 1 ) : 257 - 271.
  • 6Gao Y B, Shao Y L, Fan Y Z. Spectrally arbitrary complex sign pattern matrices [ J ]. Electronic Journal of Linear Algebra and its Application, 2009,18:674 - 692.
  • 7Jia - Yu Shao, Y Liu, Ling - Zhi Ren. The inverse problems of the determinantal regions of ray patterns and complex sign pattern matrices [ J ]. Linear Algebra and its Applications,2006,416 : 835 - 843.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部