期刊文献+

舰艇编队海上战时油料消耗预测方法研究 被引量:2

下载PDF
导出
摘要 为使舰艇编队油料消耗预测更加符合海上作战特点,提高预测速度和精度,提出了基于稀疏贝叶斯极限学习机的预测方法。分析了稀疏贝叶斯极限学习机的原理和算法,建立了舰艇编队海上战时油料消耗预测模型。以某舰艇部队执行各次作战任务的历史数据作为训练样本,采用构建的模型进行油料消耗预测,并与极限学习机、贝叶斯极限学习机、BP神经网络进行比较。仿真结果表明,稀疏贝叶斯极限学习机在预测精度、执行时间、模型大小、隐层节点数的稳定性上皆优于其他三种算法,对提高舰艇编队海上战时油料消耗预测能力具有实际意义。
出处 《军事运筹与系统工程》 2015年第4期40-45,共6页 Military Operations Research and Systems Engineering
分类号 E911 [军事]
  • 相关文献

参考文献8

  • 1KOCA A, OZTOP HF, VAROL Y, KOCA GO. Estimation of so- lar radiation using artificial neural networks with different input parameters for Mediterranean region of Anatolia in Turkey [ J ]. Expert Systems with Applications, 2011 ( 38 ) : 8756 - 8762.
  • 2SAYIN C, ERTUNC H M, HOSOZ M, et al. Performance and exhaust emissions of a gasoline engine using artificial neural net- work [ J ]. Applied Thermal Engineering, 2007 ( 27 ) :46 - 54.
  • 3陆思锡,周庆忠,熊彪.基于支持向量机的舰艇部队作战油料消耗量预测研究[J].物流技术,2013,32(3):468-470. 被引量:6
  • 4HUANG G B, ZHU Q Y, SIEW C K. Extreme learning ma- chine: theory and applications [ J ]. Neurocomputing, 2006 (70) :489 - 501.
  • 5SORIA - OLIVAS E, GOMEZ - SANCHIS J, MARTIN J D, et al. BELM : bayesian extreme learning machine[ J]. IEEE Trans- actions on Neural Networks, 2011 (22) :505 -509.
  • 6姚景升,刘飞.输入不确定BELM在发酵过程软测量中的应用[J].自动化与仪器仪表,2014(5):122-126. 被引量:1
  • 7TIPPING M E. Sparse bayesian learning and the relevance vector machine[J~. Journal of Machine Learning Research, 2001 ( 1 ) : 211 -244.
  • 8FENG G R, HUANG G B, LIN Q P, et al. Error minimized ex- treme learning machine with growth of hidden nodes and incre- mental learning [ J 1. IEEE Transactions on Neural Networks, 2009 (20) : 1352 - 1357.

二级参考文献18

  • 1Cristianini N, Shawe-Taylor J. An Introduction to Supprot Vector Machines [M].Cambridge: Cambridge Univ. Press, 2000.
  • 2B Venkoba Rao, S J Gopalakrishna. Hardgrove grindability index prediction using support vector regression [J].Intemational Journal of Mineral Processing, 2009, 91 (1-2):55-59.
  • 3Reshma Khemchandani, Jayadeva, Suresh Chandra. Regularized least squares fuzzy support vector regression for financial time series forecasting [J]. Expert Systemswith Applications,2009, 36(1 ): 132-138.
  • 4SidharthaPanda,NarayanaPrasadPadhy.Comparisonofparticleswarmopti- mization and genetic algorithm for FACTS-based controller design [J]. Ap- plied Soft Computing, 2008, 8(4): 1418-1427.
  • 5A J Kulkarni, K Krishnamurthy, S P Deshmukh, R S Mishra. Microstructural optimization of alloys using a genetic algorithm [J]. Materials Science and Engineering A, 2004, 372(1-2):213-220.
  • 6VladimirCherkassky, MaYunqian. Practical selection ofSVM paramete and noiseestimationforSVMregression[J].NeuralNetworks,2004,(17):1132126.
  • 7Afzel Noore, Liang Tian. A novel approach for short-term load forecasting using support vector machines [J]. International Journal of Neural Systems, 2004,14(5):2 342-2 347.
  • 8B H M Sadeghi. A BP-neural network predictor model for plastic injection moldingprocess [J]. Journal of Materials Processing Technology, 2000,103 (3): 411-416.
  • 9Kadlec P, Gabrys B,Strandt S. Data driven soft sensor inthe process industry. Computers and Chemical Engineering,2009,33: 795 - 814.
  • 10Huang G B, Zhu Q Y, Siew C K. Extreme learning ma-chine: theory and applications. Neurocomputing, 2006,70:489-501.

共引文献5

同被引文献29

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部