期刊文献+

基于直流电压降法的三点弯曲试样疲劳裂纹扩展速率测量方法 被引量:3

Measurement on Fatigue Crack Growth Rate of Three-Point Bending Specimens Based on Direct Current Potential Drop Method
下载PDF
导出
摘要 通过有限元分析得到了三点弯曲试样的裂纹长度与电压降及裂纹尖端应力强度因子的关系式,开发了可以在应力强度因子恒定、可控升高和降低的条件下进行疲劳试验的软件,通过编写测试程序的方式连续进行不同载荷、载荷比、频率条件下的疲劳试验,在线测量裂纹扩展速率,且根据裂纹长度扩展情况自动改变测试条件.通过对2种镍铝青铜合金材料疲劳裂纹扩展速率测量,对该方法进行了验证,得到了裂纹扩展速率与应力强度因子关系曲线,并利用Priddle公式和ParisErdogan公式拟合得到了裂纹扩展应力强度因子门槛值等疲劳特征参数. The relationships between crack length and potential drop,and stress intensity factor(K)were obtained by finite element analysis.The software for fatigue tests was developed,which could realize constant Kcontrol.Fatigue tests controlled by this software could in-situ monitor crack growth rates at different Kvalues,stress ratios(R)and frequencies,and the loading condition can be automatically changed during crack growths.Two kinds of nickel aluminum bronze(NAB)were used for fatigue crack growth rate(FCGR)test,and the relation between fatigue crack growth rate and stress intensity factor amplitudeΔK was obtained,which verified this testing method.The results were analyzed by the Priddle model and Paris-Erdogan equation,from which the threshold of stress intensity factor amplitude(ΔKth)were obtained.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第12期1778-1784,1791,共8页 Journal of Shanghai Jiaotong University
基金 国家重点基础研究发展规划(973)项目(2014CB046701)资助
关键词 直流电压降 疲劳裂纹扩展速率 三点弯曲试样 direct current potential drop(DCPD) fatigue crack growth rate three-point bending specimens
  • 相关文献

参考文献16

  • 1Sato Y, Atsumi T, Shoji T. Continuous monitoring of back wall stress corrosion cracking growth in sen- sitized type 304 stainless steels weldment by means of potential drop techniques[J]. International Journal of Pressure Vessels and Piping, 2007, 84: 274-283.
  • 2Merah N. Detecting and measuring flaws using elec- tric potential techniques[J]. Journal of Quality in Ma- intenance Engineering, 2003, 9 ( 2 ) : 160-175.
  • 3Coleman C, Grigoriev V, Inozemtsev V, et al. De- layed Hydride Cracking in zirealoy fuel cladding [J]. Nuclear Engineering and Technology, 2009, 41 (2) : 171-178.
  • 4Seok C S. Bae B K, Koo J M. DC potential drop method for evaluating material degradation [J ]. KSME International Journal, 2004, 18 ( 8 ): 1368- 1374.
  • 5Bowler N. Theory of four-point direct-current poten- tial drop measurements on a metal plate[J]. Research in Nondestructive Evaluation, 2006, 17 ( 1 ) : 29-48.
  • 6Andresen P L, Morra M M. Effect of rising and fall- ing K profiles on SCC growth rates in high tempera- ture water[J]. Journal of Pressure Vessel Technology, 2007, 129(3): 488-506.
  • 7Andresen P L, Hickling J, Ahluwalia K S, et al. Effects of hydrogen on SCC growth rate of Ni alloys in high temperature water[J]. Corrosion, 2008, 64 (9) : 707-720.
  • 8Andresen P L, Morra M M. IGSCC of non-sensitized stainless steels in high temperature water[J]. Journal of Nuclear Materials, 2008, 383: 97-111.
  • 9ASTM Standard E399, 2012e3, Standard Test Meth- od for Linear-Elastic Plane-Strain Fracture Toughness Klc of Metallic Materials[S].
  • 10ASTMStandard E647, 2013ael, Standard Test Method for Measurement of Fatigue Crack Growth Rates[S].

二级参考文献18

  • 1PARIS P C, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Basic En- gineering, 1963, 85 : 528-534.
  • 2WALKER K. ASTM STP462 The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum [S]. US: ASTM, 1970: 1-14.
  • 3FORMAN R G. Numerical analysis of crack propagation in cyclic loaded structures[J]. Jour- nal of Basic Engineering, 1967, 89: 459-465.
  • 4SATO Y, ATSUMI T, SHOJI T. Continuous monitoring of back wall stress corrosion cracking growth in sensitized type 304 stainless steels weldment by means of potential drop techniques [J]. International Journal of Pressure Vessels and Piping, 2007, 84: 274-283.
  • 5MERAH N. Detecting and measuring flaws using electric potential techniques[J]. Journal of Quality in Maintenance Engineering, 2003, 9(2) : 160-175.
  • 6ANDRESEN P L, MORRA M M. Effect of ris ing and falling K profiles on SCC growth rates in high temperature water[J]. Journal of Pressure Vessel Technology, 2007, 129(3): 488-506.
  • 7ANDRESEN P L, HICKLING J, AHLUWA- LIA K S, et al. Effects of hydrogen on SCC growth rate of Ni alloys in high temperature water[J]. Corrosion, 2008, 64(9): 707-720.
  • 8ANDRESEN P L, MORRA M M. IGSCC of non-sensitized stainless steels in high temperature water[J]. Journal of Nuclear Materials, 2008, 383: 97-111.
  • 9ANDRESEN P L. Perspective and direction of stress corrosion cracking in hot water[C] // Pro- ceedings of Tenth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors. USA: NACE, 2001.
  • 10UHLIR A, Jr. The potentials of infinite systems of sources and numerical solutions of problems in semiconductor engineering[J]. Bell System Technical Journal, 1954, 34(1) : 105-128.

共引文献4

同被引文献16

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部