期刊文献+

基于神经电极形状参数的脑组织微动损伤仿真 被引量:3

Simulation of Brain Micromotion Induced Injury Based on Investigation of Neural Probe Geometry Parameters
下载PDF
导出
摘要 为了预测脑组织微动损伤,采用数值仿真法,基于超黏弹性本构对神经电极-大脑组织模型进行数值仿真,分析了神经电极形状参数(过渡圆角、楔形角、厚度)对脑组织微动损伤的影响规律.结果表明:圆角半径为20μm时最大应变与损伤区域均控制在较小范围;楔形角取为70°可降低最大应变10.34%,减少损伤区域34.52%;电极厚度为15μm时损伤区域最小. In order to predict micromotion induced injury,finite element(FE)models,utilizing hyper-viscoelastic constitutive equations,were developed to conduct a series of numerical simulations of the neural probe-brain model.The influences of neural probe geometry parameters(e.g.tip fillet,wedge angle,wall thickness)on micromotion induced brain injury were investigated.The results show that the fillet radius of20 micrometers keeps both the maximum strain and injury zone in a small region while the wedge angle of70 degree leads to a 10.34%reduction in the strain and a 34.52% reduction in the injury zone.The wall thickness of 15 micrometers generates the minimal injury zone.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第12期1882-1887,1906,共7页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金项目(51175334) 上海交通大学医工(理)交叉基金项目(YG2013MS06)资助
关键词 微动 神经电极 形状参数 有限元 micromotion neural probe geometry parameter finite element
  • 相关文献

参考文献20

  • 1Ward M P, Rajdev P, Ellison C, et al. Toward a comparison of microelectrodes for acute and chronic recordings[J]. Brain Research, 2009, 1282 : 183-200.
  • 2Capadona J R, Tyler D J, Zorman C A, et al. Me- chanically adaptive nanocomposites for neural interfa- cing[J]. MRS Bulletin, 2012, 37(06) :581-589.
  • 3Winslow B D, Christensen M B, Yang W K, etal. A comparison of the tissue response to chronically im- planted Parylene-C-coated and uncoated planar silicon microelectrode arrays in rat cortex[J]. Biomaterials, 2010, 31(35) :9163-9172.
  • 4Gilletti A, Muthuswamy J. Brain micromotion a- round implants in the rodent somatosensory cortex [J]. Journal of Neural Engineering, 2006, 3(3) : 189.
  • 5Li M, Yah Y, Wang Q, et al. A simulation of cur- rent focusing and steering with penetrating optic nerve electrodes[J]. Journal of Neural Engineering, 2013, 10(6) :066007.
  • 6Capadona J R, Tyler D J, Zorman C A, et al. Me- chanically adaptive nanocomposites for neural interfa- cing[J]. MRS Bulletin, 2012,37(06) :681-589.
  • 7Wu F, Im M, Yoon E. A flexible fish-bone-shaped neural probe strengthened by biodegradable silk coat- ing for enhanced biocompatibility [C]//Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International, Beijing: IEEE, 2011: 966-969.
  • 8KimEGR, JohnJ K, Tu H, etal. Ahybrid silicon- parylene neural probe with locally flexible regions[J]. Sensors and Actuators B: Chemical, 2014,195 : 416-422.
  • 9Streit W J, Xue Q S, Prasad A, etal. Electrode fail- ure: tissue, electrical, and material responses[J]. Pulse, IEEE, 2012, 3(1): 30-33.
  • 10Zhu R, Huang G L, Yoon H, et al. Biomechanical strain analysis at the interface of brain and nanowire electrodes on a neural probe[J]. Journal of Nanotech- nology in Engineering and Medicine, 2011, 2 ( 3 ) : 031001.

同被引文献4

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部