期刊文献+

基于柔顺机构的减振神经电极的设计与评估 被引量:2

Physical Design Concepts and Biomechanical Evaluations of a Novel Neural Electrode Abutment with Micromotion-Attenuation Capability Based on Compliant Mechanisms
下载PDF
导出
摘要 为了提高神经电极长期稳定性,提出基于柔顺结构的新型减振神经电极的设计思路,对其柔性铰链进行建模分析,并采用有限元方法对电极-脑组织界面的微动进行静态分析和模态分析,研究了不同方向微振对电极-脑组织界面力学状态的影响,对新型减振电极与原电极的力学性能进行对比评估.结果显示,新型减振电极可以有效改善微振动环境下的应力状态:在横向微振环境下,有效降低最大应力6.64%;纵向微振环境下,有效降低最大应力4.47%;其二、三阶固有频率为3~8Hz,可避开微振的频率范围.新型减振电极可显著提高电极的减振能力,预期可有效提高电极工作寿命. Micromotion is one of the most important factors that influence the long-term stability of neural electrodes.In order to improve the long-term stability of brain-implanted electrodes,a neural electrode abutment which has the capability of vibration attenuation was developed to control different modes of micromotion in a more effective way.The compliant hinge was studied with the mechanics modeling analysis,and the static and modal mechanical states of neural electrode-brain tissue interface were investigated with finite element methods.The results of the finite element analysis confirmed that the novel neural electrode abutment had the anticipated micromotion-attenuation capability.The proportion of decline of von Mises stress was 4.47% on the longitudinal direction and 6.64% on the lateral direction.The results show that the novel neural electrode abutment is effective in reducing vibration,which has potential capabilities for improving the stability of neural electrodes in a long term.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第12期1888-1892,1906,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金项目(51175334) 上海交通大学医工(理)交叉基金项目(YG2013MS06)资助
关键词 微电极 柔顺机构 微振 有限元法 microelectrode compliant mechanism micro-motion finite element method
  • 相关文献

参考文献18

  • 1Winslow B D, Christensen M B, Yang W K, etal. A comparison of the tissue response to chronically im- planted Parylene-C-coated and uncoated planar silicon microelectrode arrays in rat cortex[J]. Biomaterials, 2010, 31(35): 9163-9172.
  • 2Lai H Y, Liao L D, Lin C T, etal. Design, simula- tion and experimental validation of a novel flexible neural probe for deep brain stimulation and multi- channel recording[J]. Journal of Neural Engineering, 2012, 9(3) :036001.
  • 3Gutowski S M, Templeman K L, South A B, et al. Host response to microgel coatings on neural electrodes implanted in the brain[J]. Journal of Biomedical Materi- als Research Part A, 2014, 102(5): 1486-1499.
  • 4Li M, Yan Y, Wang Q, et al. A simulation of cur-rent focusing and steering with penetrating optic nerve electrodes[J]. Journal of Neural Engineering, 2013, 10(6) :066007.
  • 5Seymour J P, Kipke D R. Neural probe design for re- duced tissue encapsulation in CNS[J]. Biomaterials, 2007, 28(25) :3594-3607.
  • 6Winslow B D, Christensen M B, Yang W K, etal. A comparison of the tissue response to chronically im- planted Parylene-C-coated and uncoated planar silicon microelectrode arrays in rat cortex[J]. Biomaterials, 2010, 31(35) :9163-9172.
  • 7Welberg L. Brain-machine interfaces: Restoring movement in a paralysed hand[J]. Nature Reviews Neuroscience, 2012, 13 (6) : 360-361.
  • 8Moxon K A, Hallman S, Sundarakrishnan A, et al. Long-term recordings of multiple, single-neurons for clinical applications: the emerging role of the bioac- tive microelectrode[J]. Materials, 2009, 2(4) : 1762- 1794.
  • 9Lee H, Bellamkonda R V, Sun W, etal. Biomechan- ical analysis of silicon microelectrode-induced strain in the brain[J]. Journal of Neural Engineering, 2005, 2 (4) :81.
  • 10Subbaroyan J, Martin D C, Kipke D R. A finite-ele- ment model of the mechanical effects of implantable microelectrodes in the cerebral cortex[J]. Journal of Neural Engineering, 2005, 2(4):103.

二级参考文献45

  • 1杨国兴,张宪民,王华.基于有限元方法的柔性铰链式微夹持器优化设计[J].中国机械工程,2006,17(10):1074-1078. 被引量:18
  • 2陈贵敏,刘小院,贾建援.椭圆柔性铰链的柔度计算[J].机械工程学报,2006,42(B05):111-115. 被引量:26
  • 3金振林,岳义.Stewart型六维力传感器的静态解耦实验[J].仪器仪表学报,2006,27(12):1715-1717. 被引量:11
  • 4余跃庆.柔顺机构学[M].北京:高等教育出版社,2007(5).
  • 5Her I, Midha H. A Compliant Number Concept for Compliant Mechanisms and Type Synthesis [J].Journal of Mechanisms, Transmissions,and Automation in Design,Trans. ASME, 1987,109(3):348-355.
  • 6Luharuka R., 14esketh PJ. Design of fully compliant, in-plane rotary, bistable micromechanisms for MEMS applications[ J ].Sensors and Actua- tors A: Physics, 2007,134( 1 ) : 231-238.
  • 7Choi Y.J., Sreenivasan S.V., Choi B.J. Kinematic design of large displacement precision XY positioning stage by using cross strip flexure joints and over-constrained mechanism [J]. Mechanism and Machine Theory, 2008,43(6) :724-727.
  • 8Yuichi S,Kumagaya S. Apparatus for Holding Opti-cal Element,Barrel,Exposure Apparatus,and DeviceProducing:US.7697222[P]. 2007-08-09.
  • 9Rau J, Schoeppach A, Ulrich Weber. Objective withat Least One Optical Element: US, 7239462 [P],2007-07-03.
  • 10Trunz M, Hilgers R,Merz E, et al. Optical ImagingDevice,Particularly an Objective, with at Least OneOptical Element:US,6191898CP]. 2001-02-20.

共引文献24

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部