期刊文献+

基于极坐标变换的改进NSGA-Ⅱ算法

An Improved NSGA-Ⅱ Algorithm Based on Polar Coordinate Transformation
下载PDF
导出
摘要 在实际工程中存在着大量的多目标优化问题,而由于大部分多目标优化问题有无穷多个最优解,且传统的数学方法如梯度下降法和牛顿法,无法求解一些不可微或表达式过于复杂的多目标优化问题。为避免以上局限,NSGA-Ⅱ作为求解多目标优化问题的代表算法被提出,但NSGA-Ⅱ算法仍存在着一些不足,如变异算子功能过于简单,降低了Pareto最优解的多样性。为增加Pareto最优解的多样性,文中设计了一种基于极坐标变换的改进NSGA-Ⅱ算法,该算法可使得Pareto最优解分布更加均匀,并最终通过标准的测试函数验证了算法的有效性。 In engineering practice, there are many multi-objective optimization problems, to most of which exist infinite multiple optimal solutions that are beyond the capability of traditional mathematical methods such as the gradient descent method and the Newton method if they are non-differentiable or the expression is too complex. The NSGA-II, as the representative of solving multi-objective optimization problem algorithms was put forward, which still has some deficiencies such as mutation operator function is too simple, thus reducing the diversity of Pareto opti- mal solutions. In order to increase the diversity of Pareto optimal solutions, this paper designs an improved NSGA-II algorithm based on polar coordinates transform that makes Pareto optimal solutions distribution more uniform. The effectiveness of the algorithm is verified by the standard test functions.
作者 刘江 魏静萱
出处 《电子科技》 2016年第2期34-37,共4页 Electronic Science and Technology
基金 国家自然科学基金项目资助项目(61203372)
关键词 NSGA-Ⅱ 极坐标变换 多目标优化 NSGA-II polar coordinate transformation multi-objective optimization
  • 相关文献

参考文献10

  • 1胡贵强.多目标优化的遗传算法及其实现[J].重庆文理学院学报(自然科学版),2008,27(5):12-15. 被引量:26
  • 2钱艳婷,王鹏涛.基于遗传算法的多目标优化方法[J].天津理工大学学报,2010,26(3):20-22. 被引量:6
  • 3Deb K, Pratap A, Agarwal S, et al. A fast elitist non - domi- nated sorting genetic algorithm for multi - objective optimiza- tion: NSGA - II [ J]. IEEE Transactions on Evolutionary Computation,2002,6 (2) : 182 - 197.
  • 4Kalyanmoy Deb, Ankur Sinha, Pekka J Korhonen, et al. An interactive evolutionary muhiobjective optimization method based on progressively approximated value functions [ J]. IEEE Transactions on Evolutionary Computation, 2010, 14 (5) :723 -739.
  • 5Hu Xiaobing, Wang Ming, Ezequiel Di Paolo. Calculating complete and exact pareto front for multi - objective optimi- zation: a new deterministic approach for discrete problems [J]. IEEE Transactions on cybernetics, 2013, 43 3): 1088 - 1101.
  • 6樊纪山,王经卓,熊盛武.一种改进的多目标优化算法[J].计算机应用研究,2012,29(12):4463-4465. 被引量:1
  • 7Yu Zhiwen, Wong Hausan, Wang Dingwen, et al. Neighbor- hood knowledge - based evolutionary algorithm for multi - objective optimization problems [J]. IEEE Transactions on Evolutionary Computation,2011,15 (6) : 812 - 831.
  • 8何坚勇编著.最优化方法[M].北京:清华大学出版社,2007
  • 9Wang Yong,Cai Zixing. Combining multi -objective optimi- zation with differential evolution to solve constrained optimi- zation problems [J]. IEEE Transactions on Evolutionary Computation,2012,16 ( 1 ) : 117 - 134.
  • 10Chen Bili, Zeng Wenhua, Lin Yangbin, et al. A new local search- based multiobjective optimization algorithm [J]. IEEE Transactions on Evolutionary Computation, 2015, 19 (1) :50 -73.

二级参考文献24

  • 1张海兵,徐诚.基于改进AHP的目标价值评估模型分析[J].弹箭与制导学报,2007,27(1):228-230. 被引量:13
  • 2[1]Weimin Wang,Radu Zmeureanu,HnguesRivard.ApplyiIlg multi-objective genetic algorithmsin green building design optimization.Building and Environment,2005(40):1512-1525.
  • 3[2]Hidemi Y,Yasuhire T.Multi-objective genetic algorithm for solving N-version program design problem.Reliability Engineering and System Safety.
  • 4[8]J.F.Asuihr Madeira,H.Rodrignes,Heitor Pina.Multi-objective optimization of structures topology by genetic algorithms[J].Advances in Engineering Software,2005(36):21-28.
  • 5[9]Els I.Ducheyne,Robert R.De Wulf,Bernard De Baets.Single versus multiple objective genetic algorithms for solving the even-flow forest management problem[J].Forest Ecology and Management,2004(201):259-273.
  • 6张文修 梁怡.遗传算法的数学基础[M].西安:西安交通大学出版社,2003..
  • 7许树柏.层次分析法原理[M].天津:天津大学出版社,1988.160-165.
  • 8DEB K;PRATAB A,AGARWAL S,etal. A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ[J]. IEEE Trans on Evolutionary Computation, 2002,6 ( 2 ) : 182-197.
  • 9ZITZLER E, LAUMANNS M, THIELE L. SPEA2: improving the strength Pareto evolutionary algorithm, TIK-Report Nr./03 [ R ]. Iurich :ETH,TIK,2001.
  • 10李峰.多目标演化算法及在优化问题中的应用[D].武汉:武汉理工大学,2004.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部