期刊文献+

基于驾校考勤机的人脸检测应用研究

Application Research on Face Detection Based on Driving School Attendance Machine
下载PDF
导出
摘要 针对驾校现有指纹考勤系统存在的学时造假及部分指纹检测失效等问题,采用了一种椭圆高斯双肤色模型与Adaboost快速检测算法相结合的人脸检测算法。首先,应用HSV-自适应Retinex算法对待检测图像进行光照增强处理。其次,在聚类性较好的YCgCr颜色空间对光照增强后的图片进行双肤色建模,粗检测出人脸区域。最后,利用形态学方法去除孤立肤色点以缩减检测范围,并运用Adaboost快速检测算法实现人脸的精确定位。实验数据显示,该方法在检测率、检测时间等方面有所提高。实验结果表明,改进后的人脸检测算法可实现光照不均以及不同年龄下的人脸检测,能够快速且较为准确的检测人脸。 Due to the driving school existing fingerprint attendance system problems such as hours fraud and part of the fingerprint detection failure, a algorithm for face detection combining elliptical Gaussian double skin color model and rapid detection of Adaboost algorithm was put forward. First of all, a method based on HSV-adaptive Retinex algo- rithm was proposed to illumination compensation in order to make the photos in uniform illumination environment. The method can solve the inadequate light of vehicle cab. What's more, due to the clustering is excellent in YCgCr color space. A double skin model based on Elliptical and Gaussian model was put forward to deal with the picture which have been illumination compensation. Then, the face regions were crudely detected. Finally, using morphological methods to remove isolated skin spot, in this way can reduce the detection range. And using Adaboost algorithm, the accurate face detection was acquired. Experimental data show that this method has increased in terms of the detection rate, detection time. Experimental results indicates that the improved face detection algorithm which can realize the face detection in uniform illumination and different ages, able to quickly and more accurately detect human faces.
出处 《激光杂志》 北大核心 2016年第1期108-112,共5页 Laser Journal
基金 国家自然科学基金(61463047)
关键词 人脸检测 自适应单尺度 颜色空间 双肤色模型 级联分类器 face detection adaptive single scale color space dual skin models cascade classifier
  • 相关文献

参考文献11

二级参考文献53

  • 1吴暾华,周昌乐.快速人脸检测系统的设计与实现[J].计算机应用,2005,25(10):2351-2353. 被引量:9
  • 2李闯,丁晓青,吴佑寿.一种改进的AdaBoost算法——AD AdaBoost[J].计算机学报,2007,30(1):103-109. 被引量:53
  • 3徐锦.人脸检测的自适应肤色分割算法研究[J].贵州大学学报(自然科学版),2007,24(2):171-174. 被引量:4
  • 4GonzalezRC,WoodsRE,EddinsSL.数字图像处理[M].阮秋琦,译.北京:电子工业出版社,2008.
  • 5Land E H, McCann J J. Lightness and Retinex Theory [J]. J. Opt. Soc. Am(S1084-7529), 1971, 61(1): 1-11.
  • 6Rahman Z, Woodell G A, Jobson D J. A comparison of the Multiscale Retinex with Other Image Enhancement Techniques [C]// IS&T 50th Annual Conference, Final Program and Proceedings, 1997:426-431.
  • 7Jobson D J, Rahman Z, Woodell G A. Properties and Performance of a Center/Surround Retinex [J]. IEEE Transactions on Image Processing(S1057-7149), 1997, 6(3): 451-462.
  • 8Rahman Z, Jobson D J, Woodell G A. Multi-scale Retinex for Color Image Enhancement [C]// International Conference on Image Proeessing, Lausanne, Switzerland, Sept 16-19, 1996, 3: 1003-1006.
  • 9Jobson D J, Rahman Z U, Woodell G A. A Multiscale Retinex for Bridging the Gap Between Color Images and the Human Observation of Scenes [J]. IEEE Transactions on Image Processing(S1057-7149), 1997, 6(7): 965-976.
  • 10Tao L, Asari V. Modified Luminance Based MSR for Fast and Efficient Image Enhancement [C]// Proceedings of Applied Imagery Pattern Recognition Workshop, Washington D C, USA, Oct 15-17, 2004: 174-179.

共引文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部