期刊文献+

一种改进的多目标合作型协同进化遗传算法 被引量:15

Improved cooperative coevolutionary genetic algorithm for multi-objective
下载PDF
导出
摘要 针对传统多目标算法早熟收敛及多样性不足的问题,提出了一种改进的非支配排序合作型协同进化遗传算法(Improved Non-dominated Sorting Cooperative Coevolutionary Genetic Algorithm,INSCCGA)。该算法利用外部档案存储每一代进化过程中产生的精英个体,并对其不断进行更新,以加快算法的收敛速度。同时提出了一种新型子种群之间协同进化的方式,增强候选解的多样性。利用ZDT系列标准测试函数,与经典的多目标进化算法NSGA-II以及多目标协同进化算法NSCCGA进行了对比,结果表明改进算法具有更好的收敛性以及均匀的解分布。 Aiming at the problem of premature convergence and insufficient diversity in traditional multi-objective optimization algorithm, it proposes an improved non-dominated sorting cooperative coevolutionary genetic algorithm. The algorithm uses an external archive storage elite individuals which generate each evolutionary process, and the elitism individuals are updated constantly in the external archive, thus speeding up the convergence rate. Meanwhile, this algorithm improves the diversity of candidate solutions by proposing a new kind of co-evolution between sub-populations. Compared with well-known multi-objective evolutionary algorithm NSGA-II and multi-objective coevolutionary algorithm NSCCGA on a suite of standard ZDT test function, the proposed algorithm has the better convergence and better uniform distribution.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第2期18-23,共6页 Computer Engineering and Applications
基金 陕西省自然科学基金(No.2012JM8023) 陕西省教育厅自然科学基金专项(No.12JK0726)
关键词 多目标进化算法 合作型协同进化遗传算法 外部档案 multi-objective evolutionary algorithm cooperative coevolutionary genetic algorithm external archive
  • 相关文献

参考文献15

  • 1Potter M A,De Jong K A.A cooperative coevolutionary approach to function optimization[C]//LNCS 866:Proc of the Parallel Problem Solving from Nature-PPSN III,Int’l Conf on Evolutionary Computation.Berlin:Springer-Verlag,1994:249-257.
  • 2Tan K C,Yang Y J,Goh C K.A distributed cooperative coevolutionary algorithm for multiobjective optimization[J].IEEE Transactions on Evolutionary Computation,2006,10(5):527-549.
  • 3Keerativuttitumrong N,Chaiyaratana N,Varavithya V.Multiobjective cooperative coevolutionary genetic algorithm[C]//LNCS 2439:Proc of Parallel Problem Solving From Nature VII(PPSN’02).Berlin,Germany:Springer-Verlag,2002:288-297.
  • 4Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
  • 5Lorio A W,Li X D.A cooperative coevolutionary multiobjective algorithm using non-dominated sorting[C]//Proc of the Genetic and Evolutionary Computation Conf,Part I.Washington:Springer-Verlag,2004:537-548.
  • 6公茂果,焦李成,杨咚咚,马文萍.进化多目标优化算法研究[J].软件学报,2009,20(2):271-289. 被引量:399
  • 7Zitzler E,Thiele L.Multiobjective evolutionary algorithms:a comparative case study and the strength Pareto approach[J].IEEE Transactions on Evolutionary Computation,1999,3(4):257-271.
  • 8Zitzler E,Deb K,Thiele L.Comparison of multiobjective evolutionary algorithms:empirical results[J].Evolutionary Computation,2000,8(2):173-195.
  • 9Coello C A C.A comprehensive survey of evolutionarybased multi-objective techniques[J].Knowledge and Information Systems:An International Journal,1999,1(3):269-308.
  • 10De Jong D,Pollack J B.Ideal evaluation from coevolution[J].Evolutionary Computation Journal,2004,12(2):5-9.

二级参考文献36

共引文献423

同被引文献125

引证文献15

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部