期刊文献+

自适应迁移预测的动态多目标差分演化算法

Adaptive immigration and prediction strategy based dynamic multi-objective differential evolution
下载PDF
导出
摘要 针对动态多目标优化环境下寻找并跟踪变化的Pareto最优前沿和Pareto最优解集的难题,提出两个策略:自适应迁移策略和预测策略。自适应迁移策略是根据环境的变化自适应地插入迁移个体来提高算法种群的多样性,从而提高算法对动态环境的适应能力。预测策略是通过时间序列并加上一定的扰动来产生预测种群,来预测环境变化之后的Pareto最优解集,以达到对其快速跟踪的目的。通过两个策略在多目标差分演化算法上的应用来解决动态多目标优化问题。实验过程中,通过平均最优解集分布均匀度和平均决策空间世代距离等指标表明,基于自适应迁移策略和预测策略的多目标差分演化算法能够很好适应变化的环境,并能够快速找到Pareto最优解集。 In order to solve the problem of searching and tracing the Pareto Optimal Front(POF)and Pareto Optimal Set(POS), two strategies are investigated. The adaptive immigration strategy is designed to improve the diversity of the population by adaptively inserting the immigrations according to the changed environments, thus can improve the adaptability to the environments. The prediction strategy is used to quickly trace POF by the prediction population which is established by the time series and some disturbances. The two strategies are introduced into differential evolution to solve the dynamic multi-objective problems. The experimental results show that the adaptive and prediction strategies based differential evolution shows great ability to adapt to the changed environments and can find POS quickly.
作者 万书振
出处 《计算机工程与应用》 CSCD 北大核心 2016年第2期86-91,共6页 Computer Engineering and Applications
基金 科技部国家重点科技专项(No.2014ZX07104-005-01) 湖北省教育厅项目(No.B2015253) 湖北省科技厅项目(No.2014CFB681) 三峡大学科研启动基金项目(No.KJ2012B055)
关键词 动态多目标优化 自适应迁移策略 预测策略 差分演化算法 dynamic multi-objective optimization adaptive immigration strategy prediction strategy differential evolution
  • 相关文献

参考文献12

  • 1Farina M,Deb K,Amato P.Dynamic multiobjective optimization problems:test cases,approximations,and applications[J].IEEE Transactions on Evolutionary Computation,2004,8(5):425-442.
  • 2Zhou A,Jin Y,Zhang Q,et al.Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization[C]//4th International Conference on Evolutionary Multi-Criterion Optimization.Matsushima,Japan:Springer-Verlag,2007:832-846.
  • 3Wang Y,Li B.Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment[C]//Proceedings of the IEEE International Congress on Evolutionary Computation,CEC 2009.Trondheim,Norway:IEEE Computer Society,2009:630-637.
  • 4Talukder A K M K,Kirley M.A Pareto following variation operator for evolutionary dynamic multi-objective optimization[C]//Proceedings of the IEEE International Congress on Evolutionary Computation.Hong Kong,China:Inst of Elec and Elec Eng Computer Society,2008:2270-2277.
  • 5Goh C,Tan K C.A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization[J].IEEE Transactions on Evolutionary Computation,2009,13(1):103-127.
  • 6Altrock P M,Traulsen A,Reeves R G,et al.Using underdominance to bi-stably transform local populations[J].Journal of Theoretical Biology,2010,267(1):62-75.
  • 7Cheng H,Yang S.Genetic algorithms with immigrants schemes for dynamic multicast problems in mobile ad hoc networks[J].Engineering Applications of Artificial Intelligence,2010,23(5):806-819.
  • 8Chat fi eld C.The analysis of time series:an introduction[M].[S.l.]:CRC Press,2004.
  • 9Deb K,Rao N U,Karthik S.Dynamic multi-objective optimization and decision-making using modified NSGA-II:a case study on hydro-thermal power scheduling[C]//Proceedings of International Conference on Evolutionary Multi-criterion Optimization(EMO),Matsushima,Japan,2007:803-817.
  • 10Bellman R E.Processes,adaptive control[M].Princeton,NJ:Princeton University Press,1961.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部