期刊文献+

可公开验证可定期更新的多秘密共享方案 被引量:3

Publicly verifiable and periodically renewable multi-secret sharing scheme
下载PDF
导出
摘要 基于YCH方案和双线性对的性质,提出了一个可公开验证可定期更新的多秘密共享方案。该方案在保留YCH方案原有优点的同时实现了对秘密份额的公开验证和定期更新。每个参与者只需持有一个秘密份额即可实现对多个秘密的重构,利用单向散列链的性质,实现对秘密份额的定期更新,任何人都可以对公开信息的有效性和秘密份额的正确性进行公开验证,有效防止分发者和参与者的欺诈。最后详细分析了方案的正确性和性能,并在随机预言模型中证明方案的安全性。分析表明,在椭圆曲线上的离散对数问题、双线性Diffie-Hellman问题和计算Diffie-Hellman问题假设下,所提出的方案是安全有效的。 A publicly verifiable and periodically renewable multi-secret sharing scheme is proposed, which is based on the YCH scheme and the properties of bilinear pairings. The secret shares can be verified publicly and updated periodically with keeping the advantages of YCH scheme. The secrets can be reconstructed while one participant only needs holding one secret share. The features of the one-way hash chain are used to make secret shares publicly verifiable and regularly renewable. Anyone can verify the effectiveness of the public information and the correctness of the secret shares. The cheating of the distributor and participants can be prevented effectively. Finally, analyses of the correctness and performance of the scheme ae given in detail and the security of the scheme is proved in the random oracle model. Under assumptions of the discrete logarithm problem of the elliptic curve, bilinear Diffie-Hellman problem and computer Diffie-Hellman problem, the analysis indicates that the mentioned scheme is safe and effective.
作者 张敏 杜伟章
出处 《计算机工程与应用》 CSCD 北大核心 2016年第2期117-126,共10页 Computer Engineering and Applications
关键词 双线性对 公开验证 单向散列链 双线性DIFFIE-HELLMAN问题 计算DIFFIE-HELLMAN问题 随机预言模型 bilinear pairing publicly verifiable one-way hash chain bilinear Diffie-Hellman problem computer Diffie Hellman problem random oracle model
  • 相关文献

参考文献15

  • 1Shamir A.How to share a secret[J].Communications of the ACM,1979,22(11):612-613.
  • 2Blakley G R.Safeguarding cryptographic keys[C]//Proceedings of AFIPS 1979 National Computer Conference,1979,48:313-317.
  • 3Chor B,Goldwasser S,Micali S,et al.Verifiable secret sharing and achieving simultaneity in the presence of faults[C]//Proceedings of 26th IEEE Symposium on Foundations of Computer Science.Portland:IEEE,1985:251-260.
  • 4Harn L.Efficient sharing(broadcasting)of multiple secret[J].IEEE Proc Comput Digit Tech,1995,142(3):237-240.
  • 5Stadler M.Publicly verifiable secret sharing[C]//LNCS 1070:Advances in Cryptology-EUROCRYPT’96.Berlin:SpringerVerlag,1996:190-199.
  • 6Yang C C,Chang T Y,Hwang M S.(tn)multi-secret sharing scheme[J].Applied Mathematics and Computation,2004,151(2):483-490.
  • 7Shao Jun,Cao Zhenfu.A new efficient(t,n)Verifiable Multi-Secret Sharing(VMSS)based on YCH scheme[J].Applied Mathematics and Computation,2005,168(1):135-141.
  • 8Zhao Jianjie,Zhang Jianzhong,Zhao Rong.A practical verifiable multi-secret sharing scheme[J].Computer Standards&Interfaces,2007,29(1):138-141.
  • 9李雄,李志慧,于静.一种可验证的多秘密共享方案[J].计算机工程,2008,34(24):160-161. 被引量:2
  • 10郭现峰.基于RSA的防欺诈多秘密共享方案[J].计算机工程与应用,2009,45(17):9-10. 被引量:2

二级参考文献67

  • 1郭现峰,袁丁.一个基于SAS思想的防欺诈的秘密共享方案[J].四川师范大学学报(自然科学版),2005,28(5):627-630. 被引量:2
  • 2庞辽军,柳毅,王育民.一个有效的(t,n)门限多重秘密共享体制[J].电子学报,2006,34(4):587-589. 被引量:26
  • 3Shamir A. How to Share a Secret[J]. Communications of ACM, 1979, 22(11): 612-613.
  • 4Blakley G. Safeguarding Cryptographic Keys[C]//Proc. of AFIPS National Computer Conference. New York, USA: AFIPS Press, 1979.
  • 5Yang Chouchen, Chang Tingyi, Hwang Minshiang. A (t, n) Multisecret Sharing Scheme[J]. Applied Mathematics and Computation, 2004, 151(2): 483-490.
  • 6He J, Dawson E. Multi-secret Sharing Scheme Based on One-way Function[J]. Electronics Letters, 1995, 31(2): 483-490.
  • 7Zhao Jianjie, Zhang Jianzhong, Zhao Rong. A Practical Verifiable Multi-secret Sharing Scheme[J]. Computer Standards & Interfaces, 2007, 29(1): 138-141.
  • 8Shao Jun, Cao Zhenfu. A New Efficient(t, n) Verifiable Multi-secret Sharing (VMSS) Based on YCH Scheme[J]. Applied Mathematics and Computation, 2005, 168(1 ): 135-140.
  • 9Chang Chin-Chen, Horug Woan-Jing, Buehrer D J. A Cascade Exponentiation Evaluation Scheme Based on the Lempel-Ziv-Welch Compression Algorithm[J]. Journal of Information Science and Engineering, 1995, 11(3): 417-431.
  • 10Knuth D V. The Art of Computer Programming: Seminumefical Algorithms[M]. [S. l.]: Addision-Wesley, 1969.

共引文献24

同被引文献11

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部