期刊文献+

基于改进BP神经网络的矿井CO检测方法的研究 被引量:1

Research on Detection of CO in Mine Based on Improved BP Neural Network
下载PDF
导出
摘要 采用催化传感器和电化学式气体传感器配合使用的传感器阵列。为了解决2种传感器对矿井CO和CH4气体的交叉敏感问题,提出了一种基于改进BP神经网络的矿井CO检测方法。通过MATLAB仿真可以看出,基于神经网络的传感器阵列方法可以明显提高CO检测精度。实际输出值和期望输出的绝对误差平均值为3.43 ppm,相对误差平均值为1.43%。 In order to increase the precision of CO detection, electrochemical sensor was used with a catalytic sensor. Because there was the cross sensitivity of two sensors to CO and methane gas in mine, a kind of CO detection method based on improved BP neural network is presented. According to the results simulated by MATLAB, the precision based on BP neural network and gas sensor array can increase the measurement precision of CO. The average absolute error of actual output and desired output is 3.43ppm, and the average relative error is 1.43%.
作者 代洪
出处 《煤矿机械》 2016年第1期230-232,共3页 Coal Mine Machinery
关键词 CO检测 BP神经网络 交叉敏感 电化学式气体传感器 催化传感器 CO detection BP neural network cross sensitivity electrochemical sensor catalytic sensor
  • 相关文献

参考文献6

二级参考文献37

  • 1韩超,车永才,王继波.改进的BP神经网络煤炭需求预测模型[J].辽宁工程技术大学学报(自然科学版),2005,24(z1):290-292. 被引量:18
  • 2程跃,车永才,魏毅.基于Matlab的改进BP在煤炭产量预测中的应用[J].江西煤炭科技,2006(3):79-81. 被引量:5
  • 3向德辉.固体催化剂[M].北京:化学工业出版社,1982..
  • 4[1]Bay H W, Blurton K F, Lieb H C, et al. Electrochemical measurement of carbon monoxide[J]. Amer Lab, 1972, 4(7): 57-58
  • 5[2]Yan Heqing, Liu Chung-Chiun. A solid polymer electrolyte-based electrochemical carbon monoxide sensor[J]. Sensors and Actuators B, 1994, 17: 165-168
  • 6[3]Kucernak A R, Muir B. Analysis of the electrical and mechanical time response of solid polymer-platinum composite membranes[J]. Electrochemical Acta, 2001, 46: 1313-1322
  • 7[4]Liu Raymond, Her Wei-hwa, Fedkiw Peter S. In situ electrode formation on a nafion membrane by chemical platinization[J]. J Electrochem Soc, 1992, 139(1):15
  • 8[5]Bay H W, Blurton K F, Sedlak J M, et al. Electrochemical technique for the measurement of carbon monoxide[J]. Anal Chem, 1974, 46: 1837-1839
  • 9MAN Zhi-hong,WU Hong-ren,LIU S,et al.A new adaptive backpropagation algorithm based on Lyapunov stability theory for neural networks[J].IEEE Trans on Neural Networks,2006,17(6):1580-1591.
  • 10Wong W K,Yuan C W M,Fan D D.Stitching defect dctection and classification using wavelet transform and BP neural network[J].Expert Systems with Applications,2009,36:3845-3856.

共引文献100

同被引文献32

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部