期刊文献+

SBHCF:基于奇异值分解的混合协同过滤推荐算法 被引量:3

SBHCF: An SVD-based Hybrid Collaborative Filtering Recommendation Algorithm
下载PDF
导出
摘要 针对传统协同过滤中的最近邻查找不够合理导致推荐的准确率较低的困境。提出一个基于矩阵分解的混合相似度算法。该方法融合了基于模型的奇异值矩阵分解算法和基于近邻的协同过滤算法皮尔逊相关系数,并引入阈值和杰卡德系数对相似度进行修正。在公共有效数据集上的实验表明,所提出算法的平均绝对误差比传统的推荐算法至少降低了7.7%,有效提高了推荐准确率。 The traditional CF recommendation algorithms are poor in accuracy because of its irrational neighborretrieve. In this paper,an SVD-based hybrid collaborative filtering algorithm is proposed to solve the challenge.The method combines SVD model-based CF algorithm and PCC memory-based CF algorithm. Several parameters and JACCARD are introduced to revise the similarity. The experiment in the public data set proves that the SBHCF algorithm effectively improves the recommendation accuracy with a reduced MAE by at least 7. 7% than the traditional CF algorithm.
出处 《电子科技》 2016年第1期44-47,共4页 Electronic Science and Technology
基金 上海智能家居大规模物联共性技术工程中心基金资助项目(GCZX14014) 沪江基金研究基地专项基金资助项目(C14001) 广西可信软件重点实验室开放课题基金资助项目(KX201415)
关键词 协同过滤 奇异值矩阵分解 杰卡德系数 皮尔逊系数 collaborative filtering singular value matrix factorization Jaccard coefficient Pearson coefficient
  • 相关文献

参考文献11

  • 1刘建国,周涛,汪秉宏.个性化推荐系统的研究进展[J].自然科学进展,2009,19(1):1-15. 被引量:437
  • 2Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems:A survey of the state - of - the - art and possible extensions [ J]. IEEE Transactions on Knowl- edge and Data Engineering,2005,17 (6) :734 - 749.
  • 3张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法[J].软件学报,2007,18(10):2403-2411. 被引量:197
  • 4黄创光,印鉴,汪静,刘玉葆,王甲海.不确定近邻的协同过滤推荐算法[J].计算机学报,2010,33(8):1369-1377. 被引量:217
  • 5Choi K, Sub Y. A new similarity function for selecting neigh- bors for each target item in collaborative filtering [ J ]. Knowl- edge - Based Systems,2013,37(2) :146 - 153.
  • 6Xue G R, Lin C, Yang Q, et al. Scalable collaborative filtering using cluster - based smoothing [ C ]. Lanzhou : Proceedings of the 28th Annum International ACM SIGIR Conference on Research and Development in Information Retrieval,2005.
  • 7方耀宁,郭云飞,丁雪涛,兰巨龙.一种基于局部结构的改进奇异值分解推荐算法[J].电子与信息学报,2013,35(6):1284-1289. 被引量:13
  • 8Herlocker J L, Konstan J A, Terveen L G, et al. Evaluating collaborative filtering recommender systems [ J]. ACM Trans- actions on Information Systems ,2004,22( 1 ) :5 - 53.
  • 9Liu Q, Chen E ,Xiong H, et al. A cocktail approach for travel package recommendation [J]. IEEE Transactions on Knowl- edge and Data Engineering,2014,26(2) :278 -293.
  • 10Ge Y, Xiong H, Tuzhilin A, et al. Cost - aware collaborative filtering for travel tour recommendations [ J J. ACM Transac- tions on Information Systems,2014,32( 1 ):4 -10.

二级参考文献140

共引文献819

同被引文献31

引证文献3

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部