期刊文献+

基于二阶Volterra级数滤波器的海杂波建模研究 被引量:1

Sea Clutter Modeling Based on Second Order Volterra Series Filter
下载PDF
导出
摘要 讨论了运用二阶Volterra级数滤波器进行海杂波建模预测的方法。根据相空间重构理论,以海杂波序列的嵌入维数作为滤波器长度,建立了二阶截断的Volterrra滤波器并行的乘积耦合实现结构,降低了滤波器的应用复杂程度。采用了一种自适应调整的NLMS算法实时调整滤波器系数,对比试验表明该算法具有更快的收敛速度和更小的均方误差。用Volterra级数滤波器对真实海杂波数据进行了预测分析,结果表明该模型能够准确地预测海杂波,虽然在一步预测误差性能上稍逊于RBF网络,但在较大步长时性能占优。 The method for sea clutter modeling with second order Volterra series filter is discussed.According to the phase space reconstruction theory,the embedded dimension is adopted as the length of the filter. The parallel multiplication-coupled structure for second order Volterra series filter is built up to reduce the complexity. The adaptive NLMS algorithm is used for adjusting the filter core coefficient in real time.Contrast experiment shows that the algorithm has faster convergence rate and smaller MSE. The Volterra filter was used for prediction of real sea clutter data. The results indicate that: 1) this filter can model and predict sea clutter accurately; and 2) compared with RBF network,it has better performance for large step prediction,while it is slightly inferior in one-step prediction performance.
作者 欧阳文
机构地区 中国人民解放军
出处 《电光与控制》 北大核心 2016年第1期29-32,共4页 Electronics Optics & Control
关键词 海杂波 预测 模型 Volterra级数滤波器 sea clutter prediction model Volterra series filter
  • 相关文献

参考文献12

二级参考文献58

  • 1华强,夏哲雷,祝剑英.一种改进的变步长LMS自适应滤波算法及其仿真[J].中国计量学院学报,2012,23(3):304-308. 被引量:8
  • 2崔万照,朱长纯,保文星,刘君华.混沌时间序列的支持向量机预测[J].物理学报,2004,53(10):3303-3310. 被引量:99
  • 3孟庆芳,张强,牟文英.混沌时间序列多步自适应预测方法[J].物理学报,2006,55(4):1666-1671. 被引量:27
  • 4LI Tan,JIANG J.Adaptive second-order Voherra filtered-X RLS algorithms with sequential and partial updares for nonlinear active noise control[C] //Proceedings of 4th IEEE Conference on Industrial Electronics and Applications.[S.1.] :IEEE Press,2009:1625-1630.
  • 5ZHOU Dayong,DEBRUNNER V,ZHAI Yan.Efficient adaptive nonlinear ECHO cancellation,using sub-band implementation of the adaptive Volterra filter[C] //Proceedings of IEEE Inter-national Conference on Acoustics.Speech and Signal Process-ing.[S.L] :IEEE Press,2006:277-280.
  • 6MATHEWS V J.Adaptive polynomial filters[J].IEEE Signal Proc.Magazine,1991,8(3):10-26.
  • 7WENG Binwei,BARNER K E.Nonlinear system identification in impulsive environments[J].IEEE Trans.on Signal Processing,2005,53(7):2588-2594.
  • 8J R Phillips. Automated extraction of nonlinear circuit macro-models [C]//IEEE 2000 Custom Integrated Circuits Conference. USA: IEEE, 2000: 451-455.
  • 9S P Parker, F A Perry. A Discrete ARMA Model for Nonlinear System Identification [J]. IEEE Transactions on Circuits and Systems (S0098-4094), 1981: 28(3): 224-233.
  • 10R Bemardini, G Cortelazzo, G Mian. Multidimensional fast Fourier transform algorithm for signals with arbitrary symmetries [J]. IEEE Optics Soc. A(S1084-7529), 1999, 16(8): 1892-1908.

共引文献79

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部