期刊文献+

基于模糊阈值和水平集的红外图像分割方法 被引量:6

Infrared image segmentation method based on fuzzy threshold and level set
下载PDF
导出
摘要 针对阈值法分割红外图像易产生误分割和水平集分割方法受初始曲线限制大,提出了一种结合模糊阈值与水平集的自适应红外图像分割方法。该方法首先采用二维Otsu方法计算阈值,利用该阈值获取模糊阈值分割法中的窗口宽度,使模糊阈值分割法具有自适应性;然后采用此自适应模糊阈值分割法预分割红外图像,利用预分割结果自动获取水平集初始曲线;最后将Chan-Vese方法与Shi方法结合提出改进的水平集方法,并用此方法分割红外图像。实验结果表明,本文方法具有较好的分割效果和较强的鲁棒性。 As it is likely to generate redundant contours by fuzzy-threshold-based infrared image segmentation method and it is sensitive to initial contour by level set segmentation method, an adaptive segmentation method of infrared image based on fuzzy threshold and level set is presented. Firstly, this algorithm introduces 2-D Otsu to calculate a threshold, and then the window width of fuzzy threshold is obtained based on the threshold from 2-D Otsu. Then, the adaptive fuzzy threshold is adopted to pre-segment infrared images, and the initial contour of level set is obtained depending on the pre-segmentation result. Finally, an improved level set method by combing Chan-Vese method and Shi method is proposed, and the improved level set method is adopted to segment infrared images. The results of experiments prove that this algorithm has better segmentation effect and robustness.
出处 《激光与红外》 CAS CSCD 北大核心 2016年第1期109-114,共6页 Laser & Infrared
基金 国家863计划资助项目(No.2013AA122301) 国家自然科学基金项目(No.41471354) 高分辨率对地观测系统应用系统建设项目资助
关键词 图像分割 水平集方法 模糊阈值 二维OTSU 红外图像 自适应 image segmentation level set method fuzzy threshold 2-D Otsu infrared image adaptive
  • 相关文献

参考文献17

  • 1Davis J W, Sharma V. Background-subtraction in thermal imagery using contour saliency [ J ]. International Journal of Computer Vision,2007,71 (2) : 161 - 181.
  • 2张书真.一种检测红外小目标的图像阈值分割算法[J].激光与红外,2013,43(10):1171-1174. 被引量:6
  • 3Liu Z, Zhou F, Chen X, et al. Iterative infrared Ship target segmentation based on multiple features [ J ]. Pattern Rec- ognition ,2014,47 ( 9 ) :2839 - 2852.
  • 4OHTSU N. A threshold selection method from gray-level histograms [ J]. IEEE Trans. Syst. , Man, Cybern. , 1979,9 ( 1 ) :62 -66.
  • 5Gao C, Zhou D, Guo Y. An iterative thresholding segmen- tation model using a modified pulse coupled neural net- work [ J ]. Neural processing Letters, 2014, 39 ( 1 ) : 81 - 95.
  • 6Mei X, Lin J, Zhang L, et al. Infrared image segmentation algorithm based on improved variational level set model [ C ]//Mechatronics and Automation, 2007. ICMA 2007. International Conference on. IEEE ,2007:1224- 1228.
  • 7Wirthgen T,Lempe G, Zipser S, et al. Level-set based in- frared image segmentation for automatic veterinary health monitoring [ M ]//Computer Vision and Graphics. Springer Berlin Heidelberg,2012:685 - 693.
  • 8Tao W,Jin H, Liu J. Unified mean Shift segmentation and graph region merging algorithm for infrared Ship target segmentation [ J ]. Optical Engineering, 2007,46 ( 12 ) :127002 -127002 -7.
  • 9Egmont-Petersen M,de Ridder D, Handels H. Image pro- cessing with neural networks-a review [ J ]. Pattern rec- ognition ,2002,35 (10) :2279 - 2301.
  • 10Cui K,Li B,Yuan J,et al. An Improved Unit-Linking PC- NN for Segmentation of Infrared Insulator Image [ J ]. Ap- pl. Math,2014,8 (6) :2997 - 3004.

二级参考文献10

共引文献363

同被引文献53

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部