期刊文献+

对一类组合线性同余发生器的不可预测性研究 被引量:4

Unpredictability of a kind of combined linear congruential generator
原文传递
导出
摘要 线性同余发生器是使用很广的一类随机数发生器。为克服这类发生器的缺陷,可组合多个发生器得到组合线性同余发生器。不可预测性是度量序列安全性的一个重要指标。一些应用必须满足不可预测。为了评估某类组合线性同余发生器的不可预测性,该文利用代数法对这类组合线性同余发生器的不可预测性进行了研究,给出了对这类组合线性同余发生器进行预测的数据复杂度与时间复杂度,并以3篇重要文献中的5个组合线性同余发生器为例,给出预测的分析结果与建议。结果显示,这类组合线性同余发生器在一些推荐参数下可以预测,不适合作密码应用。 The linear congruential generator (LCG) is a kind of widely used random number generator. Several generators can be combined as combined linear congruential generators (CLCG) to compensate LCG's shortages. Unpredictability is an important index of measuring the security of sequences, which is indispensable in some applications. Unpredictability of some kind of CLCG was studied using the algebraic method to evaluate the unpredictability of the CLCG, with data complexity and time complexity of predicting the CLCG being given. Five CLCGs from three important references were analyzed as examples, which presents the analytic results of predicting the five CLCGs. The results show that the CLCGs are predictable under some recommended parameters, while these CLCGs are unsuitable for cryptographic applications.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第1期22-27,共6页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(61202493)
关键词 安全保密 随机数 组合线性同余发生器 前向不可预测性 后向不可预测性 security secrecy random number combined linear congruential generator forward unpredictability backward unpredictability
  • 相关文献

参考文献11

  • 1StallingsW.密码编码学与网络安全-原理与实践(第四版)[M].盂庆树,王丽娜,傅建明,等译.北京:电子工业出版社,2007.
  • 2Knuth D E. The Art of Computer Programming [M]. 2nd ed. New York; Addison-Wesley Publishing Company, 2002.
  • 3Plumstead J B. Inferring a sequence generated by a linear congruence [C]//Proc 23rd IEEE Syrup on Foundation of Computer Science. Piscataway, NJ:IEEE Computer Society Press, 1982:153- 159.
  • 4Boyar J. Inferring sequences produced by a linear congruential generator missing low-order bits [J]. Journal of Cryptology, 1989, 1(3) :177 - 184.
  • 5沈华韵,张鹏,王侃.改进线性同余法随机数发生器[J].清华大学学报(自然科学版),2009(2):191-193. 被引量:23
  • 6Wichmann B A, Hill I D. An efficient and portable pseudo-random number generator [J]. Applied Statistics, 1982, 31(2):188 - 190.
  • 7L'Eeuyer P. Efficient and portable combined random number generators EJ]. Communications of the ACM, 1988, 31(6) : 742-749, 774.
  • 8L'Ecuyer P, Tezuka S. Structural properties for two classes of combined random number generators [J]. Mathematics of Computation, 1991, 57(196) :735 - 746.
  • 9L'Ecuyer P, Andres T H. A random number generator based on the combination of four LCGs [J]. Mathematics and Computers in Simulation, 1997, 44(1) : 99 - 107.
  • 10周燕.关于线性同余组合发生器的周期性和统计性质[J].重庆大学学报(自然科学版),2000,23(6):67-70. 被引量:5

二级参考文献11

  • 1高惠璇.统计计算[M].北京:北京大学出版社,1996.410pp.
  • 2中国科学院计算中心概率统计组.概率统计计算[M].北京:科学出版社,1983.105-130.
  • 3Knuth D E. The Art of Computer Programming [M]. 2nd ed. New York: Addison-Wesley Publishing Company, 2002.
  • 4Brown F B, Nagaya Y. The MCNP5 random number generator[J]. Trans Am Nucl Soc, 2002, 87:230 - 232.
  • 5L'esuyer P. Tables of linear congruential generators of different sizes and good lattice structure[J]. Math of Camp, 1999, 68(225): 249- 260.
  • 6Brown F B. Random number generation with arbitrary strides[J]. Trans Am Nucl Soc, 1994, 71: 202- 203.
  • 7Marsaglia G S. The DIEHARD battery of tests of randomness[EB/OL]. [2008-5-12]. http: //stat. fsu. edu/pub/diehard.
  • 8高惠璇,统计计算,1996年,85页
  • 9程兴新,统计计算方法,1989年,26页
  • 10刘德贵,FORTRAN算法汇编.2,1983年,481页

共引文献25

同被引文献24

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部