期刊文献+

面向WAAM无支撑制造大悬臂的自适应切片 被引量:6

Adaptive slicing for WAAM to fabricate large overhang without support
原文传递
导出
摘要 为满足多轴送丝电弧熔积增材制造(WAAM)无支撑制造大悬臂结构的需求,提出一种厚度和方向均可变的自适应切片算法.首先通过层间相对悬臂长度的计算,进行大悬臂结构识别;然后对位置和方向分别进行二分迭代优化和主成分分析(PCA)迭代优化,确定分段平面,分解大悬臂结构为微悬臂子结构;最后对子结构进行平行切片,产生均匀切片以满足工艺制造需求.相比于现有的最小包围球冠和质心轴法,该算法的相对悬臂长度和悬臂角更小,分段子结构的数量也更少,具备更佳的可制造性和更高的制造效率.实例证实了算法的有效性. To fabricate large overhang structure without support using multi-axis WAAM(wire+arc additive manufacturing),a adaptive slicing algorithm with variable thickness and direction was proposed.First,in accordance with relative overhang length between two adjacent layers,large overhang structure was catch and segmented into micro overhang sub-structures.Then,location and direction of segment plane were determined by bisection iteration and PCA(principal component analysis)iteration,respectively.Finally,each sub-structure was further cut into uniform slice to meet the needs of deposition process.In comparison with the smallest enclosing spherical crown and centroidal axis,the proposed algorithm has smaller overhang length,overhang angle and fewer sub-structures.Thus,it has better manufacturability and higher building efficiency.Examples and test show its validity.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第1期56-59,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(51175203 51374113)
关键词 送丝电弧熔积增材制造 悬臂结构 自适应切片 悬臂长度 主成分分析 wire+arc additive manufacturing(WAAM) overhang structure adaptive slicing over hang length principle component analysis(PCA)
  • 相关文献

参考文献12

  • 1Kazanas P, Deherkar P, Almeida P, et al. Fabrica- tion of geometrical features using wire and arc addi- tive manufacture[J]. Journal of Engineering Manu- facture, 2012, 226(B6): 1042-1051.
  • 2Karunakaran K P, Bernard A, Suryakumar S, et al. Rapid manufacturing of metallic objects [J]. Rapid Prototyping Journal, 2012, 18(4) : 264-280.
  • 3Stranno G, Hao L, Everson R M, et al; A new ap- proach to the design and optimisation of supportstruc- tures in additive manufacturing [J]. International Journal of Advanced Manufacturing Technology ,2013, 66(9-12): 1247-1254.
  • 4Hu K L, Jin S, Wang C C L. Support slimming for single materiai based additive manufacturing [ J]. Computer-aided Design, 2015, 65: 1-10.
  • 5Singh P, Dutta D. Multi-direction slicing for layered manufacturing[J]. Journal of Manufacturing Science and Engineering, 2001, 123(2) : 129-142.
  • 6Sundaram R, Choi J. A slicing procedure for 5-axis laser aided DMD process[J]. Journal of Manufactur- ing Science and Engineering, 2004, 126 (3): 632- 636.
  • 7Zhang J, Liou F. Adaptive slicing for a multi-axis la- ser aided manufacturing process[J]. Journal of Man- ufacturing Science and Engineering, 2004, 126 (2) : 254-261.
  • 8Miklos B, Giesen J, Pauly M. Discrete scale axis rep- resentations for 3D geometry[J]. ACM Transactions on Graphics(TOG), 2010, 29(4) : 157-166.
  • 9Ruan J Z, Sparks T, Panackal A, et al. Automated slicing for a multiaxis metal deposition system[J]. Journal of Manufacturing Science and Engineering, 2007, 129(2):303-310.
  • 10Kabakabala D, Swathi R, Ruan J, et al. A multi- axis slicing method for direct laser deposition process[C]//Proc of International Design Engineer- ing Technical Conferences and Computers and Infor- mation in Engineering Conference. New York.. American Society of Mechanical Engineers, 2010: 425-432.

同被引文献100

引证文献6

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部