期刊文献+

带非线性梯度项的渗流方程的梯度爆破

Gradient Blow-up for the Filtration Equations with Nonlinear Gradient Terms
下载PDF
导出
摘要 研究了一类带非线性梯度项的Newton渗流方程u_t-△u^m=F(u,▽u)的梯度爆破性质,即▽u在有限时间爆破而u仍然一致有界.首先,在右端反应项只含非线性梯度项时,对任意连续Dirichlet边界条件,得到了当初值充分大时,方程梯度爆破.其次,在右端反应项含有梯度和零阶非线性项时,得到了方程梯度爆破的某些结果,这些结果部分地回答了Souplet于2002年提出的一个相关问题.最后,在右端反应项含有非局部梯度源时,得到了通常不会产生梯度爆破的结果. A property of gradient blow up for a kind of Newton filtration equation u_t-△um=F(u,▽u) with nonlinear gradient is studied. This property concludes that u is uniformly bounded when ▽u blows up in limited time. We firstly show that if the reaction term in the right side of an equation has only a nonlinear gradition term, then for any continuous boundary condition, this equation blows up gradiently when the initial value is big enough. Secondly, some conclusions about gradient blow-up are reached if the reaction term has a gradient term and a zero-order nonlinear term, which partly solved the problem proposed by Souplet in 2002. Finally, we show an equation does not blow up gradiently when the reaction term of right side has nonlocal gradient source.
作者 黄东兰
出处 《闽南师范大学学报(自然科学版)》 2015年第4期20-28,共9页 Journal of Minnan Normal University:Natural Science
基金 福建省中青年教师教育科研项目(JA14262)
关键词 渗流方程 非线性梯度项 梯度爆破 filtration equation nonlinear gradient term gradient blow-up
  • 相关文献

参考文献13

  • 1Z. Wu, J. Zhao, J. Yin, et al. Nonlinear Diffusion Equation[M]. River Edge, N J: World Scientific Publishing Co. Inc., 2001.
  • 2O. A. Ladyzhenskaia, V. A. Solonnikov, N. N. Uralceva. Linear and Quasilinear Equations of Parabolic Type[M]. Providence, RI: Amer. Math. Soc. Translations, 1967.
  • 3A. Friedman. Partial Differential Equations of Parabolic Type[M]. Englewood Cliffs, N. J.: Prentice-Hall Inc., 1964.
  • 4Souplet, Philippe. Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions[J]. Differential Intergral Equations, 2002, 15(2): 237-256.
  • 5J. Ball. Remarks on blow-up and nonexistence theorems for nonlinear evolution equations[J]. Quart. J. Math. Oxford ser.(2), 1977, 28(112): 473-486.
  • 6Murray H. Protter, Hans F. Weinberger. Maximum Principles in Differential Equations[M]. New York: Springer-Verlag, 1967.
  • 7S. Angenent, M. Fila. Interior gradient blow-up in a semilenear parabolic equation[J]. Diff. Intergral Equations, 1996, 9: 865- 877.
  • 8K. Asai, N. Ishimura. On the interior derivative blow-up for the curvature evolution of capillary surfaces[J]. Proc. Amer. Math. Soc., 1998, 126: 835-840.
  • 9T. Dlotk. Examples of parabolic problems with blowing-up derivatives[J]. J. Math. Anal. Appl., 1991, 1554: 226-237.
  • 10M. Fila, G. Lieberman. Derivative blow-up and beyond for quasilinear parabolic equations[J]. Diff. Intergral Equations, 1994, 7: 811-821.

二级参考文献3

  • 1Souplet P. Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions[J]. Diff.Integral Equations, 2002, 15: 237 - 256.
  • 2Alaa N, Pierre M. Weak solutions of some quasilinear elliptic equations with data measures[J]. SIAM J. Math. Anal,1993, 24:23-25.
  • 3Evans C.Partial differential equations[M].Rhode Island:AMS Providence,1998.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部