摘要
令a,b为互素的正整数,n为非负整数.D(a,b;n)表示不定方程ax+by=n的非负整数解(x,y)的个数Tripathi证明了■,其中ζ_m=e^(2πi/m).在本文中,我们建立了D(a,b;n)的递推关系,从而给出了上述结论的新证明.
Let a, b be positive integers such that (a, b)= 1 and let n be a non-negative integer. Define D(a,b;n) to be the number of non-negative integer solutions(x ,y)of the Diophantine equation ax+by=n. Tripathi proved that D(a,b;n)=n/ab+1/2(1/a+1/b)+1/aj=1∑a-1ζa^-jn/1-ζa^bj+1/bk=1∑b-1ζb^kn/1-ζb^ak, where ζm = e^2πi/m. In this note, we put forward a recurrence relation of D(a, b; n) , thus giving a new proof of above formula.
出处
《南京师大学报(自然科学版)》
CAS
CSCD
北大核心
2015年第4期32-35,共4页
Journal of Nanjing Normal University(Natural Science Edition)
基金
Supported by Project of Graduate Education Innovation of Jiangsu Province(KYLX_0690)
Research Fund for the Doctoral Program of Higher Education of China(20133207110012)
the Doctoral Starting up Foundation of Qufu Normal University
关键词
丢番图方程
生成函数
留数定理
Diophantine equation, generating function, Residue theorem