期刊文献+

丢番图方程ax+by=n的一个注记(英文)

A Remark of Diophantine Equantion ax+by=n
下载PDF
导出
摘要 令a,b为互素的正整数,n为非负整数.D(a,b;n)表示不定方程ax+by=n的非负整数解(x,y)的个数Tripathi证明了■,其中ζ_m=e^(2πi/m).在本文中,我们建立了D(a,b;n)的递推关系,从而给出了上述结论的新证明. Let a, b be positive integers such that (a, b)= 1 and let n be a non-negative integer. Define D(a,b;n) to be the number of non-negative integer solutions(x ,y)of the Diophantine equation ax+by=n. Tripathi proved that D(a,b;n)=n/ab+1/2(1/a+1/b)+1/aj=1∑a-1ζa^-jn/1-ζa^bj+1/bk=1∑b-1ζb^kn/1-ζb^ak, where ζm = e^2πi/m. In this note, we put forward a recurrence relation of D(a, b; n) , thus giving a new proof of above formula.
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2015年第4期32-35,共4页 Journal of Nanjing Normal University(Natural Science Edition)
基金 Supported by Project of Graduate Education Innovation of Jiangsu Province(KYLX_0690) Research Fund for the Doctoral Program of Higher Education of China(20133207110012) the Doctoral Starting up Foundation of Qufu Normal University
关键词 丢番图方程 生成函数 留数定理 Diophantine equation, generating function, Residue theorem
  • 相关文献

参考文献6

  • 1DICKSON L E. History of the theory of numbers : diophantine analysis [ M ]. New York:Chelsea Publishing Co., 1966.
  • 2HUA L K. Introduction to number theory [ M ]. Berlin : Springer-Verlag, 1982.
  • 3NIVEN I, ZUCKERMAN H S, MONTGOMERY H L. An introduction to the theory of numbers [M ]. 5th ed. New York:John Wiley & Sons, Inc, 1991.
  • 4PONNUSAMY S, SILVERMAN H. Complex variables with applications [ M ]. Berlin: Birkhauser Boston, 2006.
  • 5TRIPATHI A. The number of solutions to ax + by = n [ J ]. Fibonacci quart, 2000(38) : 290-293.
  • 6WILF H S. Generating function ology [ M ]. 3rd ed. Wellesley: A K Peters, Ltd, 2006.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部