期刊文献+

适于风险厌恶型投资的美式看涨期权定价分析

An American Call Option Pricing Model for Risk-Averse Invertors
下载PDF
导出
摘要 介绍了为风险厌恶型投资者所设计的新型美式看涨期权的数学模型.它的定价问题是一个退化的抛物型变分不等式,也是一个自由边界(即最佳实施边界)问题.与标准美式看涨期权不同,这种新型期权在股票分红时有两条光滑单调的自由边界,而当股票不分红时仅有一条直线型的自由边界.本文运用偏微分方程方法分析讨论解的存在唯一性,自由边界的单调性、连续性、可微性以及关于事先承诺的价格l的相关性质. There is a new American call option which is designed for risk-averse invertors. The mathematical pricing model of this option can be formulated as a one-dimensional parabolie variational inequality, or equivalently, a free boundary problem. Different from the standard American call, it has two monotonous smooth free boundaries with dividends and has only one linear free boundary without dividends. To solve this problem, PDE arguments are applied. We can prove the existence and uniqueness of the solution. Then the properties of the free boundaries, such as monotonieity, smoothness, and location, are presented.
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2015年第4期71-75,112,共6页 Journal of Nanjing Normal University(Natural Science Edition)
基金 国家自然科学基金(11271143 11371155) 顺德职业技术学院校级科研项目(2015-KJZX017) 高等学校博士学科点专项科研基金(20124407110001)
关键词 美式看涨期权 期权定价 最佳实施边界 the standard American options, option pricing, optimal exercise boundary
  • 相关文献

参考文献7

  • 1BLANK F, SCHOLES M. The pricing of options and corporate liabilities [ J ]. Political economy, 1973,81 (3):637-654.
  • 2WILMOTT P, DEWYNNE J, HOWISON S. Option pricing[ M ]. London : Oxford Financial Press, 1993.
  • 3GUO X, SHEPP L. Some optimal stopping problems with nontrival boundaries for pricing exotic options [J]. Appl Prob, 2001, 38 : 647-658.
  • 4JIANG L S. Mathematical modeling and methods of option pricing[ M ]. Singapore:World Scientific, 2005.
  • 5AVNER FRIEDMAN. Variational principle and free boundary problems [ M ]. New York:John Wiley & Sons, 1982.
  • 6CONNON J R, HENRY D B, KOTLOV D B. Continuous differentiability of the free boundary for weak solutions of the Stefan problem[J]. Bull Ane Math Soc, 1974,80:45-48.
  • 7FRIEDMAN A. Parabolic variational inequalities in one space dimension and smoothness of the free boundary [J]. J Funet Anal, 1975,18 : 151-176.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部