期刊文献+

乳酸菌肽聚糖的研究进展 被引量:9

Research progress in peptidoglycan of lactic acid bacteria
原文传递
导出
摘要 肽聚糖是乳酸菌细胞壁的必需成分,它的化学结构较为保守固定,而其合成是一个涉及多步反应的复杂过程。乳酸菌肽聚糖具有多种生物学活性,比如免疫增强功能、抗感染、抗肿瘤及抗过敏等。本文对乳酸菌肽聚糖的组成结构和生物学活性进行了简要的介绍,重点综述了近年来乳酸菌肽聚糖代谢及其调控过程的研究进展,并指出了乳酸菌肽聚糖未来研究的方向。 Peptidoglycan is an essential component of the cell wall of lactic acid bacteria, its chemical structure is mainly conservative and constant, and its biosynthesis is a complex process involving multi-step reactions. Peptidoglycan of lactic acid bacteria exhibits various biological activities, such as immune-enhancing functions, anti-infection, anti-tumor, and anti-anaphylaxis. In this review, the composition, structure and biological activity of peptidoglycan of lactic acid bacteria are outlined, the research development in metabolism and regulation of peptidoglycan is reviewed emphatically, and the direction to the future study of lactic acid bacteria peptidoglycan is proposed as well.
出处 《微生物学通报》 CAS CSCD 北大核心 2016年第1期188-197,共10页 Microbiology China
基金 国家自然科学基金项目(No.31270142) 国家科技支撑计划项目(No.2014BAD02B00)~~
关键词 乳酸菌 肽聚糖 组成结构 代谢调控 生物学活性 Lactic acid bacteria Peptidoglycan Composition and structure Metabolism and regulation Biological activity
  • 相关文献

参考文献71

  • 1Salminen S, von Wright A, Ouwehand AC, et al. Lactic Acid Bacteria: Microbiological and Functional Aspects[M]. Florida: The Chemical Rubber Company Press, 2004: 1-2.
  • 2Makarova K, Slesarev A, Wolf Y, et al. Comparative genomics of the lactic acid bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(42): 15611-15616.
  • 3Sgarbi E, Lazzi C, Tabanelli G, et al. Nonstarter lactic acid bacteria volatilomes produced using cheese components[J]. Journal of Dairy Science, 2013, 96(7): 4223-4234.
  • 4da Silva ST, dos Santos CA, Bressan J. Intestinal microbiota; relevance to obesity and modulation by prebiotics and probiotics[J]. Nutrición Hospitalaria, 2013, 28(4): 1039-1048.
  • 5Bermúdez-Humarán LG, Kharrat P, Chatel JM, et al. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines[J]. Microbial Cell Factories, 2011, 10(Suppl 1): S4.
  • 6Chapot-Chartier MP. Interactions of the cell-wall glycopolymers of lactic acid bacteria with their bacteriophages[J]. Frontiers in Microbiology, 2014, 5: 236.
  • 7Xu Y, Kong J. Construction and potential application of controlled autolytic systems for Lactobacillus casei in cheese manufacture[J]. Journal of Food Protection, 2013, 76(7): 1187-1193.
  • 8Sch?r-Zammaretti P, Ubbink J. The cell wall of lactic acid bacteria: surface constituents and macromolecular conformations[J]. Biophysical Journal, 2003, 85(6): 4076-4092.
  • 9Zhang YF, Liu SY, Du YH, et al. Genome shuffling of Lactococcus lactis subspecies lactis YF11 for improving nisin Z production and comparative analysis[J]. Journal of Dairy Science, 2014, 97(5): 2528-2541.
  • 10Kramer NE, Hasper HE, van den Bogaard PTC, et al. Increased D-alanylation of lipoteichoic acid and a thickened septum are main determinants in the nisin resistance mechanism of Lactococcus lactis[J]. Microbiology, 2008, 154(6): 1755-1762.

二级参考文献79

共引文献29

同被引文献109

引证文献9

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部