期刊文献+

针对高速Delta机器人杆件优化的研究 被引量:1

Research of Bar Optimization for the High Speed Delta Robot
原文传递
导出
摘要 为了充分发挥高速Delta机器人误差累积小、运动速度快的优点,需对Delta机器人进行杆件优化的研究。在建立系统运动学和刚体动力学模型的基础上,定义了全局灵巧度与主动臂冲击振动函数,根据Delta机器人的实际工作要求,对其进行了轨迹规划。利用MATLAB遗传算法工具箱,分别以灵巧度与冲击振动函数作为适应度函数,求得各自全局的最优解,再以求得的最优解作为杆件尺寸的上下界,利用权重系数变换法将灵巧度与冲击振动函数这一多目标优化问题转化为单目标优化的问题,据此综合出一组满足优化目标的尺度参数,为Delta机器人的结构优化设计提供了参考依据。 In order to give full play of the advantages of error accumulated small and fast running speed of the high speed Delta robot,the research of bar optimization for the Delta robot is need. Based on establishing the kinematics and dynamics of rigid body model of the system,the global dexterity and the shock vibration function of driving arm are defined,according to the actual work requirements of the Delta robot,the work trajectory is planned. By using MATLAB genetic algorithm toolbox,respectively with dexterity and shock and vibration function as fitness function,the optimal solution of global is got. Then,taking the obtained optimal solution as the upper and lower bounds,by using the weight factor transformation method,the multi- objective optimization of dexterity and shock vibration function is transformed into a single objective optimization,then according to the above method,a set of meet the scale parameter optimization objectives are synthesized,a reference for the Delta robot structure optimization design is provided.
出处 《机械传动》 CSCD 北大核心 2016年第1期21-26,共6页 Journal of Mechanical Transmission
基金 教育部中央高校基本科研业务专项基金重点项目资助项目(JUSRP51316B)
关键词 Delta机器人 灵巧度 冲击振动 遗传算法 权重系数变换法 Delta robot Dexterity Shock and vibration Genetic algorithm Weight factor transformation method
  • 相关文献

参考文献10

  • 1Tan D P, Ji S M, Jin M S. Intelligent computer- aided instruction mod- eling and a method to optimize study strategies for parallel robot instruc- tion[J]. IEEE Transactions on Education, 2013,56(3) :268 -273.
  • 2Kunt E D, Naskali A T,Sabanovic A. Miniaturized modular manipu- lator design for high precision assembly and manipulation tasks [ J ]. in The 12th IEEE International Workshop on Ad,aneed Moti)n Con- trol, Sarajevo, B&H,2012.
  • 3Yu D. Parallel robots pose accuracy compensation using back propa- gation network [ J ]. Interactional Journal of Physical Sciences, 2011, 6(21 ) :5005 -5011.
  • 4Stan S D, Manic M, Szep C, et al. Performance analysis of 3 DOF Delta parallel robot. Human System Interactions (HIS)[ C]. 2011 4th International Conference on, Yokohama, Japan, 2011:215 - 220,19 - 21.
  • 5Chu M, Chen G, Huang F J,et al. Active disturbance rejection control for trajectory tracking of manipulator joint with flexibility and friction [J]. Applied Mechanics and Matericls, 2013,325- 326:1229-1232.
  • 6钱慧,杨志永,黄田.Delta机器人的尺度综合方法研究[J].机械设计,2004,21(z1):109-111. 被引量:4
  • 7张利敏,梅江平,赵学满,黄田.Delta机械手动力尺度综合[J].机械工程学报,2010,46(3):1-7. 被引量:36
  • 8Merlet J P,Daney D. Dimensional synthesis of parallel robots with a guaranteed given accuracy over a specific workspace [ C ]// Proceed- ings of the 2005 IEEE International Conference on Robotics and Au- tomation,April 18 - 22,2005, Barcelona, Spain. New York: IEEE, 2005:942 - 947.
  • 9Huang T,Li M, Li Z X, et al. Optimal kinematic design of 2 - DOF parallel manipulators with well - shaped workspace bounded by a specified conditioning index[ J]. IEEE Transactions on Robotics and Automation ,2004,20 (3) :538 - 543.
  • 10郭超,辛世界,李玉胜.两种坐标空间中Delta机器人轨迹规划仿真[J].制造业自动化,2014,36(4):49-51. 被引量:15

二级参考文献29

  • 1CLAVEL R. Device for the movement and positioning of an element in space: USA, US 4976582[P]. 1990-12-11.
  • 2HUANG T, LI Z X, LI M. Conceptual design and dimensional synthesis of a novel 2-DOF translational parallel robot for pick-and-place operations[J]. ASME Journal of Mechanical Design, 2004, 126(5): 449-455.
  • 3PIERROT F, COMPANY O. H4: A new family of 4-dof parallel robots[C]// Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, September 19-23, 1999, Atlanta. New York: IEEE, 1999: 508-513.
  • 4NABAT V, COMPANY O, KRUT S, et al. Par4: Very high speed parallel robot for pick-and-place[C]// Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, August 2-6, 2005, Alberta. New York: IEEE, 2005:1 202-1 207.
  • 5GOSSELIN C M, ANGELES J. The optimum kinematic design of a spherical 3-DOF parallel manipulator[J]. ASME Journal of Mechanism, Transmission, and Automation in Design," 1989, 111(2): 202-207.
  • 6ZANGANEH K, ANGELES J. Kinematic isotropy and the optimum design of parallel manipulators[J]. Int. J. Robot. Res., 1997, 6(2): 185-197.
  • 7HUANG T, WHITEHOUSE D J, WANG J S. Local dexterity, optimum architecture and design criteria of parallel machine tools[J]. CIRP Ann., 1998, 47(1): 347-351.
  • 8LIU X J, JIN Z L, GAO F. Optimum design of 3-DOF spherical parallel manipulators with respect to the conditioning and stiffness indices[J]. Mechanism and Machine Theory, 2000, 35(9): 1 257-1 267.
  • 9KIM HS, TSAI L W. Design optimization of a Cartesian parallel manipulator[J]. ASME Journal of Mechanical Design, 2003, 125(3): 43-51.
  • 10HUANG T, ZHAO X Y, WHITEHOUSE D J. Stiffness estimation of a tripod-based parallel kinematic machine[J]. IEEE Transactions of Robotics and Automation, 2002, 18(1): 50-58.

共引文献50

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部