期刊文献+

一类非线性分数阶中立型系统的全局可控性(英文)

Global Controllability of a Class of Nonlinear Fractional Neutral Systems
下载PDF
导出
摘要 本文研究一类非线性分数阶中立型系统的可控性问题.首先,讨论解的存在唯一性;然后基于Krasnoselskii’s不动点理论,得到系统全局可控的充分条件. In this paper, the problem of controllability for a class of nonlinear fractional neutral systems is considered. First, we discuss the existence and uniqueness of the solution. Furthermore, sufficient conditions based on Krasnoselskii's fixed point theorem are derived for the global controllability of the system.
出处 《应用数学》 CSCD 北大核心 2016年第1期136-142,共7页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(11371027,11471015) the Program of Natural Science of Colleges of Anhui Province(KJ2013A032) the Youth Superior Talent Key Foundation of Anhui Province(2013SQRL142ZD)
关键词 全局可控性 分数阶微积分 非线性中立型系统 Krasnoselskii’s不动点理论 Global controllability Fractional calculus Nonlinear neutral system Krasnoselskii's fixed point theorem
  • 相关文献

参考文献9

  • 1Podlubny I. Fractional Differential Equations[M]. San Diego: Academic Press, 1999.
  • 2Kilbas A A, Srivastava H M, TrujilloJ J. Theory and Applications of Fractional Differential Equations[M]. Amsterdam: Elsevier B.V., 2006.
  • 3Kaczorek T. Selected Problems of Fractional Systems Theory[M]. Berlin:Springer, 2011.
  • 4ZHOU X,JIANG W, HU L. Controllability of a fractional linear time-invariant neutral dynamical system[J]. Applied Mathematics Letters, 2013, 26 (4):418-424.
  • 5Balachandran K, ParkJ Y. Controllability of fractional integrodifferential systems in Banach spaces[J]. Nonlinear Analysis: Hybrid Systems, 2009, 3 (4):363-367.
  • 6Sakthivel R, Ren Y, Mahmudov N I. On the approximate controllability of semilinear fractional differential systems[J]. Computers and Mathematics with Applications, 2011, 62 (3):1451-1459.
  • 7WANGJ, ZHOU Y. Complete controllability of fractional evolution systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17 (11):4346-4355.
  • 8Alaviani S Sh. Controllability of a class of nonlinear neutral time-delay systems[J]. Applied Mathematics and Computation, 2014, 232 :1235-1241.
  • 9Balachandran K, KokilaJ, TrujilloJ J. Relative controllability of fractional dynamical systems with multiple delays in control[J]. Computers and Mathematics with Applications, 2012, 64 (10):3037-3045.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部