摘要
本文在Hilbert空间中利用Zorn引理的对偶定理获得下保序集值映射的极小不动点定理.利用该不动点定理证明广义变分不等式问题极小解的存在性.此外,还研究广义变分不等式问题解映射的下保序性.与其他多数研究变分不等式的方法相比,本文的方法是序方法,故不需要相关映射具有拓扑连续性.
In this paper, we use the dual version of Zorn's lemma to obtain a minimal fixed point theorem for lower order-preserving set-valued mappings in Hilbert lattices. Ap- plying this fixed point theorem, we introduce an existence theorem of minimal solutions to generalized variational inequalities. Furthermore, we also study the lower order-preservation of solution correspondence for parametric generalized variational inequalities. In contrast to many papers on variational inequalities, our approach is order-theoretic and the results obtained in this paper do not involve any topological continuity with respect to the considered mappings.
出处
《应用数学》
CSCD
北大核心
2016年第1期152-160,共9页
Mathematica Applicata
基金
Supported by the National Natural Science Foundation of China(11071109,11401296)
the Jiangsu Provincial Natural Science Foundation of China(BK20141008)
the Natural Science Fund for Colleges and Universities in Jiangsu Province(14KJB110007)
关键词
极小不动点
保序性
Hilbert格
广义变分不等式
Minimal fixed point
Order-preservation
Hilbert lattices
Generalized variational inequality