期刊文献+

Hilbert格上的极小不动点定理及其在不连续变分不等式中的应用(英文)

Minimal Fixed Point Theorem and its Applications to Discontinuous Variational Inequalities in Hilbert Lattices
下载PDF
导出
摘要 本文在Hilbert空间中利用Zorn引理的对偶定理获得下保序集值映射的极小不动点定理.利用该不动点定理证明广义变分不等式问题极小解的存在性.此外,还研究广义变分不等式问题解映射的下保序性.与其他多数研究变分不等式的方法相比,本文的方法是序方法,故不需要相关映射具有拓扑连续性. In this paper, we use the dual version of Zorn's lemma to obtain a minimal fixed point theorem for lower order-preserving set-valued mappings in Hilbert lattices. Ap- plying this fixed point theorem, we introduce an existence theorem of minimal solutions to generalized variational inequalities. Furthermore, we also study the lower order-preservation of solution correspondence for parametric generalized variational inequalities. In contrast to many papers on variational inequalities, our approach is order-theoretic and the results obtained in this paper do not involve any topological continuity with respect to the considered mappings.
出处 《应用数学》 CSCD 北大核心 2016年第1期152-160,共9页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(11071109,11401296) the Jiangsu Provincial Natural Science Foundation of China(BK20141008) the Natural Science Fund for Colleges and Universities in Jiangsu Province(14KJB110007)
关键词 极小不动点 保序性 Hilbert格 广义变分不等式 Minimal fixed point Order-preservation Hilbert lattices Generalized variational inequality
  • 相关文献

参考文献11

  • 1Stampscchia G. Forms bilinearires coercitives surles ensembles convexs[J]. C.R. Acad. Sci. Paris, 1964, 258: 4413-4416.
  • 2Hartman P, Stampacchia G. On some nonlinear elliptic differential functional equations[J]. Acta. Math., 1966, 115: 153-188.
  • 3Kinderlehrer D, Stampacchia G. An Introduction to Variational Inequalities and their Applications[M]. New York: Academic Press, 1980.
  • 4FANG C, Peterson E. Generalized variational inequalities[J].J. Optim, Theory Appl., 1982,38: 363- 383.
  • 5ZHANG CJ. Existence of solutions of two abstract variational inequalities[G]//Fixed Point Theory and Applications. Huntington, NY: Nova Science, 200l.
  • 6Fujimoto T. An extension of Tarski's fixed point theorem and its application to isotone complementarity problems[J]. Math. Programming, 1984, 28: 116-118.
  • 7Chitra A, Subrahmanyam P. Remarks on nonlinear complementarity problem[J].J. Optim. Theory Appl., 1987, 53: 297-302.
  • 8BorweinJ, Dempster M. The linear order complementarity problem[J]. Math. Oper. Res., 1989, 14 : 534-558.
  • 9Smithson R E. Fixed points of order preserving multifunctions[J]. Proceedings of the American Mathematical Society, 1971, 28: 304 - 310.
  • 10LIJ, Ok E A. Optimal solutions to variational inequalities on Banach Lattices[J].J. Math. Anal. Appl.,2012, 388: 1157-1165.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部