期刊文献+

求解复对称线性方程组的新分裂迭代方法及预处理子(英文) 被引量:3

A New Splitting and Preconditioner for Iteratively Solving a Class of Complex Symmetric Linear Systems
下载PDF
导出
摘要 本文提出求解系数矩阵为复对称但非埃尔米特的线性方程组的一种新分裂迭代法,研究新迭代矩阵的谱半径及最优参数选择,证明在合理的条件下新方法的收敛性,并讨论预处理子的条件数,最后以数值实验验证新方法的有效性和可行性. A new splitting iteration method is presented for the system of linear equations when the coefficient matrix is a non-Hermitian but symmetric complex matrix. The optimal parameter and the spectral radius properties of the iteration matrix for the new method are discussed in detail. Based on these results, the new method is convergent under reasonable conditions for a class of complex symmetric linear systems. With the results obtained, we show that the new method is convergent for a class of complex symmetric linear system and propose a preconditioner to improve the condition number of the system. Finally, the numerical experiment show the new method to be feasible and effective.
出处 《应用数学》 CSCD 北大核心 2016年第1期173-182,共10页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(11371275) the National Natural Science Foundation of Shanxi Province(2014011006-1)
关键词 复对称矩阵 分裂迭代法 收敛性 预处理子 Complex symmetric matrix Splitting iteration method Convergence Preconditioner
  • 相关文献

参考文献15

  • 1Arridge S R. Optical tomography in medical imaging[J]. Inverse Problem, 1999, 15: R41-R93.
  • 2Bertaccini D. Efficient solvers for sequences of complex symmetric linear systems[J]. Electr. Trans. Numer. Anal. 2004, 18: 49-64.
  • 3Feriani A, Perotti F, Simoncini V. Iterative system solvers for the frequency analysis of linear mechanical systems[J]. Comput. Methods Appl. Mech. Eng. 2000, 190: 1719-1739.
  • 4Frommer A, Lippert T, Medeke B, Schilling K. Numerical challenges in lattice quantum chromodynamics[C)/ /Lecture notes in computational science and eigineering: vol 15. Heidelberg: Springer, 2000.
  • 5Poirier B. Efficient preconditioning scheme for block partitioned matrices ith structured sparsity[J]. Numer. Linear Algebra Appl., 2000, 7: 715-726.
  • 6Van Dijk W, Toyama F M. Accurate numerical solutions of the time-dependent Schrddinger equation[J]. Phys. Rev. E, 2007, 75: 036707-1-036707-10.
  • 7Van der Vorst H A, MelissenJ B M. A Petrov-Galerkin type method for solving Ax = b, where A is symmetric complex[J]. IEEE Trans. Mag., 1990, 26(2): 706-708.
  • 8Freund R W. Conjugate gradient-type methods for linear systems with complex symmetric coefficient matrices[J]. SIAMJ. Sci. Statist. Comput., 1992, 13: 425-448.
  • 9Bunse-Gerstner A, Stover R. On a conjugate gradient-type method for solving complex symmetric linear systems[J]. Linear Algebra Appl., 1999, 287: 105-123.
  • 10Clemens M, Weiland T. Comparison of Krylov-type methods for complex linear systems applied to high-voltage problems[J]. IEEE Trans. Mag., 1998, 34(5): 3335-3338.

二级参考文献15

  • 1Arridge S R. Optical tomography in medical imaging[J], Inverse Problem, 1999,15 : R41-R93.
  • 2Bertaccini D. Efficient solvers for sequences of complex symmetric linear systems[J]. Electr. Trans. Num-er. Anal. ,2004,18 :49-64.
  • 3Feriani A’Perotti F,Simoncini V. Iterative system solvers for the frequency analysis of linear mechanicalsystems[J]. Comput, Methods Appl. Mech. Eng. ,2000 *190 : 1719-1739.
  • 4Frommer A,Lippert T,Medeke B,Schilling K. Numerical challenges in lattice quantum chromodynamics[G]//Lecture Notes in Computational Science and Eigineering, Vol 15. Heidelberg: Springer,2000.
  • 5Poirier B. Efficient preconditioning scheme for block partitioned matrices with structured sparsity [J],Numer. Linear Algebra Appl. ,2000,7:715-726.
  • 6Van Dijk W,Toyama F M. Accurate numerical solutions of the time-dependent Schrodinger equation[J].Phys. Rev. E,2007,75:036707-1-036707-10.
  • 7Van der Vorst H A,Melissen J B M. A Petrov-Galerkin type method for solving Ar = b,where A is sym-metric complex[J]. IEEE Trans. Mag. ,1990,26(2) :706-708.
  • 8Freund R W. Conjugate gradient-type methods for linear systems with complex symmetric coefficient ma-trices[J]. SIAM J. Sci. Statist. Comput.,1992 ,13 :425-448.
  • 9Bunse-Gerstner A,Stover R. On a conjugate gradient-type method for solving complex symmetric linearsystems[J]. Linear Algebra Appl. , 1999,287 : 105-123.
  • 10Clemens M, Weiland T. Comparison of Krylov-type methods for complex linear systems applied to high-voltage problems [J], IEEE Trans. Mag.,1998,34(5) :3335-3338.

共引文献3

同被引文献8

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部