期刊文献+

阻尼对带逆平方势的非线性Schrdinger方程整体解的影响 被引量:1

Effect of Damping for Global Solution of Nonlinear Schrdinger Equation with Inverse Square Potential
下载PDF
导出
摘要 本文研究一类带阻尼和逆平方势的非线性Schr¨odinger方程.旨在关心阻尼对系统整体解的影响.对于系统的次临界情形,通过引入一个特殊的变换和运用反证法,证明阻尼并不影响系统的整体解:系统的解对于任意初值都整体存在.对于系统的临界和超临界情形,分析阻尼对系统的影响,运用变分法构建一类适用于任何阻尼强度的系统整体解存在的准则. This work is concerned with the damped nonlinear SchrSdinger equation with inverse square potential. The main goal is to address that the damping affects the global existence of the solutions. For the subcritical case, a special transform is proposed and the contradiction method is applied to obtain that the damping can not disturb the global existence: the solutions globally exist with all initial data. For the critical and supercritical cases, the variational method is used to analyze the effect of damping, and to construct a criterion of global existence which is adapted to the system with arbitrary damping intensity.
作者 夏滨
出处 《应用数学》 CSCD 北大核心 2016年第1期199-207,共9页 Mathematica Applicata
基金 四川省教育厅重点科研项目(15ZA0031)
关键词 非线性SCHRODINGER方程 逆平方势 阻尼 整体解 Nonlinear Schrodinger equation Inverse square potential Damping Global existence
  • 相关文献

参考文献16

  • 1Frank W M, Land DJ,Spector R M. Singular potentials [J]. Rev. Modern Phys., 1971, 43(1): 36-98.
  • 2Landau L D,Lifshitz E M. Quantum Mechanics[M]. London-Paris: Pergamon Press Ltd., 1965.
  • 3Levy-LeblondJ M. Electron capture by polar molecules[J]. Phys. Rev., 1967, 153(1): 1-4.
  • 4Burq N, Planchon F, StalkerJ G, Tahvildar-Zadehd A S. Strichartz estimates for the wave and Schrodinger equations with the inverse-square potential [J].Journal of Functional Analysis, 2003, 203(2): 519-549.
  • 5Felli V, Terracaini S. Nonlinear Schrodinger equations with symmetric multi-polar potentials[J]. Cal. Var. Partial Differential Equations, 2006, 27(1): 25-58.
  • 6Felli V, Marchini E M, Terracini S. On Schrodinger operators with multipolar inverse-square potentials Pl.Journal of Functional Analysis, 2007, 250(2): 265-316.
  • 7Felli V, Terracaini S. Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity[J]. Communications in Partial Differential Equations, 2006, 31(3): 469-495.
  • 8Felli V, Marchini E M, Terracini S. On Schrodinger operators with multisingular inverse-square anisotropic potentials Pl. Indiana Univ. Math.Journal, 2009, 58(2): 617-676.
  • 9Planchon F, StalkerJ G, Tahvildar-Zadehd A S. LP estimates for the wave equation with the inversesquare potential[J]. Discrete Contino Dyn. Syst., 2003, 9(2): 427-442.
  • 10Hardy G H, LittlewoodJ E, P6lya G. Inequalities[M]. Cambridge: Cambridge University Press, 1988.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部