期刊文献+

差别矩阵约简表示及其快速算法实现 被引量:6

Discernibility matrix-based reduct representation and quick algorithms
原文传递
导出
摘要 差别矩阵可以拥有不同的信息,根据差别矩阵描述的区分信息量不同,给出4种差别矩阵定义,并提出相应H-约简、S-约简、B-约简和P-约简的概念;研究4种约简之间的关系,构建通用约简算法模型.为了提高约简算法的效率,给出相对分辨能力约简定义(RD-约简),揭示相对分辨能力约简与4种差别矩阵约简之间的等价性,进而设计相对分辨能力快速约简算法.最后,通过实例和UCI数据集验证了所提出约简算法的有效性和时空性能. The discernibility matrix can possess different information. In this paper, according to different discernible information quantity, four descriptions of the discernibility matrix are proposed, and the four reduct definitions, i.e., Hreduct, S-reduct, B-reduct and P-reduct are presented. The relationship and equivalence for four reducts are researched,and two general reduction algorithms are designed. In order to improve the efficiency of the reduction algorithm, the related concepts of the relative discernibility-based reduct(denoted as RD-reduct) are proposed. The equivalence between the relative discernibility-based reduct and four discernibility matrix-based reducts are revealed. Two effective reduction algorithms based on the relative discernibility are designed. Finally, the example and experiments are used to explain the feasibility and effectiveness of the proposed algorithms.
出处 《控制与决策》 EI CSCD 北大核心 2016年第1期12-20,共9页 Control and Decision
基金 国家自然科学基金项目(51307011 61402005) 安徽省自然科学基金项目(1308085QF114 1508085MF126 1508085MF127) 安徽省高等学校省级自然科学研究项目(KJ2013A015 KJ2012A212) 滁州学院科技优秀人才基金重点项目(2013RC003) 计算智能与信号处理教育部重点实验室开放课题基金项目
关键词 粗糙集 差别矩阵 分辨能力 核属性 约简 rough set discernibility matrix discernibility core attributes attribute reduct
  • 相关文献

参考文献18

  • 1Pawlak Z. Rough sets[J]. Int J of Computer and Information Science, 1982, 11(5): 341-356.
  • 2苏跃斌,郭进,郭瑞.基于幂图的属性约简[J].控制与决策,2014,29(4):743-747. 被引量:2
  • 3Liang J Y, Mi J R, Wei W, et al. An accelerator for attribute reduceion based on perspective of objects and attributes[J]. Knowledge-Based Systems, 2013, 44: 90-100.
  • 4Shen Q, Jensen R. Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring[J]. Pattern Recognition, 2014, 37(7): 1351- 1363.
  • 5Miao D Q, Zhao Y, Yao Y Y, et al. Relative reduces in consistent and inconsistent decision tables of the Pawlak rough set model[J]. Information Sciences, 2009, 179(24): 4140-4150.
  • 6杨明.一种基于改进差别矩阵的属性约简增量式更新算法[J].计算机学报,2007,30(5):815-822. 被引量:112
  • 7Skowron A, Rauszer C. The discernibility matrices and functions in information systems[C]. Intelligent Decision Support--Handbook of Applications and Advances of the Rough Sets Theory. Dordrecht: Kluwer Academic Publisher, 1991: 331-362.
  • 8Hu X H, Cercone N. Learning in relational databases: A rough set approach[J]. Computational Intelligence, 1995, 11(2): 323-337.
  • 9Kryzkiewicz M. Comparative study of alternative types of knowledge reduction in inconsistent systems[J]. Int J of Intelligent Systems, 2001, 16(1): 105-120.
  • 10张文修,米据生,吴伟志.不协调目标信息系统的知识约简[J].计算机学报,2003,26(1):12-18. 被引量:190

二级参考文献42

共引文献534

同被引文献55

引证文献6

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部