期刊文献+

乙酸甲酯水蒸气重整制合成气热化学平衡分析

Analysis of thermochemical equilibrium for syngas production via methyl acetate steam reforming
下载PDF
导出
摘要 采用Gibbs自由能最小化法对乙酸甲酯(MC)水蒸气重整制合成气反应进行热化学平衡计算,考察了温度、水酯比(n(H2O):n(MC))和压力等因素对MC水蒸气重整制合成气反应产物的影响。实验结果表明,随温度升高,合成气含量明显增大,氢碳比(n(H2):n(CO))、CH4和CO2含量则减小,在800~1000℃时,合成气含量达最大,氢碳比较稳定,有利于合成气的制备;在温度大于800℃时,随水酯比的增加,合成气含量先增大后减小,在水酯比为4时较为适宜;随压力增加,合成气含量减小,CH4和CO2含量增加,低压有利于合成气的制备。在800~1000℃、水酯比为4、常压条件下,MC水蒸气重整制合成气含量可达86%(φ)。 The thermochemical equilibrium of the syngas production through methyl acetate steam reforming was calculated by the Gibbs free energy minimization method. The effects of temperature, ratio of water to methyl acetate and pressure on the product composition were investigated. The results showed that, with temperature rise, the syngas content in the products increased obviously, and the ratio of H2 to CO, CH4 content and CO2 content decreased. In the temperature range of 800- 1 000 ℃, the syngas content reached maximum and the ratio of H2 to CO was relatively stable, which was beneficial to the syngas production. Above 800 ℃, the syngas content firstly increased and then decreased with increasing the ratio of water to methyl acetate and the suitable ratio was 4. With pressure rise, the syngas content in the products decreased, the CH4 and CO2 contents increased, and low reaction pressure was favorable to the syngas production. Under the conditions of 800-1 000 ℃, ratio of water to methyl acetate 4 and normal pressure, the syngas content could reach 86%(φ).
出处 《石油化工》 CAS CSCD 北大核心 2016年第1期69-73,共5页 Petrochemical Technology
关键词 乙酸甲酯 水蒸气重整 合成气 热化学平衡 Gibbs自由能最小化 methyl acetate steam reforming syngas thermochemical equilibrium Gibbs freeenergy minimization
  • 相关文献

参考文献18

  • 1杨东杰,楼宏铭,庞煜霞,邱学青.醋酸甲酯-甲醇-水的复合盐萃取分离研究[J].高校化学工程学报,2007,21(2):239-244. 被引量:19
  • 2田晶,顾正桂,詹其伟.醋酸甲酯-甲醇-水的分离方法比较及展望[J].化学世界,2011,52(4):248-250. 被引量:6
  • 3崔小明.国内外醋酸的供需现状及发展前景分析[J].煤化工,2015,43(2):69-74. 被引量:7
  • 4Remon J, Broust F, Volle G. et al. Hydrogen production from pine and poplar bio-oils by catalytic steam reforming influence of the bio-oil composition on the process [J]. Int J Hydrogen Energy, 2015, 40(16): 5593-5608.
  • 5Quynh Thi Phuong Bui, Yong Min-kim, Sung Pil-yoon, et al. Steam reforming of simulated biogas over plate Ni Cr cata- lysts: Influence of pre-oxidation on catalytic activity[J]. Appl Catal, B, 2015, 166/167(1): 335-344.
  • 6Iulianelli A, Liguori S, Huang Y, et al. Model biogas steam reforming in a thin Pd-supported membrane reactor to generate clean hydrogen for fuel cells [ J]. J Power Sources, 2015, 273 (1): 25-32.
  • 7Martin S, Kraaij G, Ascher T, et al. An experimental inves- tigation of biodiesel steam reforming [J]. lnt J Hydrogen Ener- gy, 2015, 40(1): 95-105.
  • 8Nahara G, Dupont V, Twigg M V, et al. Feasibility of by-drogen production from steam reforming of biodiesel (FAME) feedstock on Ni-supported catalysts [J]. Appl Catal, B, 2015, 168/169(1): 228-242.
  • 9Zainal Z A, Ali R, Lean C H, et al. Prediction of the per- formance of a downdraft gasifier using equilibrium modeling for different biomass materials [J]. Energy Convers Manage, 2001, 42(12): 1499-1515.
  • 10White W B, Jhonson S M, Dantzig G B. Chemical equilibri- um in complex mixture[J]. J Chem Phys, 1958, 28:751 - 760.

二级参考文献77

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部