期刊文献+

基追踪问题的近点算法及其应用研究 被引量:1

A proximal point algorithm of basis pursuit and its applications
下载PDF
导出
摘要 基追踪问题具有广泛的应用背景,近年来得到了大量的关注和研究。近点算法是解决该问题的一种有效算法,其关键是子问题的求解,利用线性Bregman迭代的求解思想进行Lagrange对偶分析求解子问题,设计了一个新的迭代算法BP-PPA。与线性Bregman算法相比,BP-PPA可避免参数选取对模型的依赖,并用于非压缩感知的稀疏恢复问题求解。同时,为了提高新算法的收敛速度,进一步对新算法进行了Nestrove加速,得到了加速的BP-PPA算法。数值实验中,分别针对压缩感知中的稀疏信号恢复和非压缩感知模型,测试了参数选取对算法效率的影响,实验结果验证了新算法的有效性。 Basis pursuit has promising applications and becomes a hotspot research topic in recent years. The proximal point algorithm is an effective way for solving basis pursuit problems. We propose a new algorithm, which combines the proximal point algorithm and the idea of linearized Bregman algorithm to solve this problem under the Lagrange dual analysis. Compared with the original linearized Bregman algorithm, the proposed algorithm can avoid the dependency of parameter selection on the mod- el, so its application is beyond the compressed sensing problems. In order to accelerate the convergence speed of the new algorithm, every sub-problem is speeded up by Nestrove acceleration scheme. In the simulations on sparse recovery problems of both compressed sensing and non-compressed sensing, we test the influence of parameter selections on the algorithm's convergence, and the results demonstrate the advantage of this new algorithm.
出处 《计算机工程与科学》 CSCD 北大核心 2016年第1期120-124,共5页 Computer Engineering & Science
基金 国家自然科学基金(61072118 61201327)
关键词 基追踪问题 近点算法 线性Bregman迭代 稀疏恢复 对偶分析 basis pursuit proximal point algorithm linearized Bregman iteration sparse recovery dual analysis
  • 相关文献

参考文献9

  • 1Figueiredo M, Nowak R, Wright S. Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems[J]. Journal of Selected Topics in Sig-nal Processing, 2007,1 (4) : 586- 598.
  • 2Yin W, Osher S, Goldfarb D, et al. Bregman iterative algo- rithms for /1-minimization with applications to compressed sensing[J]. SIAM Journal on Imaging Sciences, 2008,1 ( 1 ) : 143-168.
  • 3Chen S, Dohono D,Saunders M A. Atomic decomposition by basis pursuit [J]. SIAM Journal on Scientific Computing, 2001,58(1):33-61.
  • 4Parikh N,Boyd S. Proximal algorithms[J]. Foundations and Trends in Optimization,2014,1(3) : 123-231.
  • 5Lai M,Yin W. Augmented and nuclear-norm models with a globally linearly convergent algorithm[J]. SIAM Journal on Imaging Sciences, 2013,6(2) : 1059-1091.
  • 6Zhang H,Yin W. Gradient methods for convex minimization: Better rates under weaker conditions: CAM Report [R]. UCLA,2013:13-17.
  • 7Nesterov. Y. Gradient methods for minimizing composite ob- jective function [J]. Mathematical Programming, 2007, 140 (3):768 -785.
  • 8Rockafellar R. Monotone operators and the proximal point algorithm[J]. SIAM Journal on Control and Optimization, 1976,14(5) :877- 898.
  • 9Guler O. New proximal point algorithms for convex minimi- zation[J]. Society for Industy and Applied Mathematics, 1992,2(4):649- 664.

同被引文献11

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部