摘要
运用幂等矩阵核空间的性质证明复数域上两个非零幂等矩阵P,Q的组合a1P+b1Q+a2PQ+b2QP+a3PQP+b3QPQ+a4PQPQ+b4QPQP+a5PQPQP+b5QPQPQ+a6PQPQPQ(其中ai,bj∈C(1≤i≤6,1≤j≤5)且a1b1≠0)在条件(PQ)3=(QP)3下的秩与系数的选取无关,进而证明其群逆的存在性,并得到了组合aP+bQ+cPQ+dQP的群逆计算公式.
With the aid of the properties of the null space of idempotent matrices,the rank of the combination a1P +b1Q +a2PQ +b2QP +a3PQP +b3QPQ +a4PQPQ +b4QPQP +a5PQPQP +b5QPQPQ +a6PQPQPQ of two nonzero idempotent matrices P and Q over the complex field C,where ai,bj∈ C(1≤i≤6,1≤j≤5)and a1b1≠0,was proved to be independent with the choice of its coefficients and the group inverse of the combination was furtherly verified to exist under the condition(PQ)3=(QP)3.Moreover,the formula for the group inverse of the combination aP+bQ+cPQ+dQP was also obtained.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2016年第1期45-53,共9页
Journal of Jilin University:Science Edition
基金
湖北省教育厅重点项目(批准号:D20122202)
湖北省教育厅青年项目(批准号:B20122203)
关键词
群逆
幂等矩阵
组合
group inverse
idempotent matrix
combination